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Abstract

Community smells are communication and collaboration issues among develop-

ers in a software development community that make software projects difficult

to maintain. These social and organizational anti-patterns create development

knowledge gap, lack of awareness about each other’s work and mistrust among

developers. Thus, developers’ maintenance decisions and activities such as bug

fixing, source code refactoring, etc., can be influenced by community smells. Al-

though the relationship between community smells and a few technical aspects of

source code, such as bug and code smell, has been explored in the existing studies,

the impact of community smells on maintainability is yet to be investigated.

As the first step, this research investigates whether developers’ involvement in

community smells relate to software maintainability in terms of their contribution

and bug introduction. For this purpose, a prevalent community smell named

missing link smell is considered, which occurs when two developers contribute to

the same source code without mutual communication. For analysis, open-source

projects from GitHub are used to identify the involved developers in missing link.

From these, the relationship between the number of contributions and the number

of involvements in missing link of a developer is explored. The correlation is

measured between the number of commits from involved developers in missing

link and Fix-Inducing Changes (FIC), changes that introduce bugs. Both (i) the

contribution of developers and the involvement in missing link and (ii) the number

of commits from involved developers and the number of FIC commits, are found
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positively correlated. Furthermore, bugs introduced by developers involved in

missing link are mostly major type in terms of severity.

Based on these results, an empirical study is conducted to investigate whether

the maintainability differs between classes affected by community smells and those

which are not. After identifying all community smells along with involved devel-

opers by communication and collaboration analysis, classes modified by any of

those developers are categorized as smelly classes otherwise non-smelly. To assess

maintainability, change-proneness, fault-proneness, code smells and five quality

attributes of maintainability, such as modularity, reusability, analyzability, modi-

fiability, and testability are considered. These metrics are computed by analysing

project artifacts such as source code, commits, issue reports, etc.

The distributions of these metrics are compared between smelly and non-smelly

classes using statistical tools. The result shows that smelly classes are about 15

times more change-prone, 19 times more fault-prone as well as 1.7 times more

likely to contain code smells than non-smelly classes. In terms of object-oriented

metrics, smelly classes are 56% more complex, 37% more coupled, and 28% less

documented on average. The findings suggest that community smells have an

adverse impact on software maintainability. A smelly class is less maintainable

than a non-smelly class and thus requires special attention.

v



Acknowledgments

“All praises are due to Allah alone”

First of all, I am grateful to Almighty Allah for giving me the opportunity and

granting me the ability to complete my research work properly.

I would like to express my heartfelt gratitude and respect to my supervisor,

Professor Dr. Kazi Muheymin-Us-Sakib, Institute of Information Technology, Uni-

versity of Dhaka, for his constant support, guidance and inspiration. His support

and help have kept me motivated throughout this thesis.

I am thankful to the faculty and thesis committee members of Institute of

Information Technology, University of Dhaka for their valuable feedback and sug-

gestions, which have helped me to improve my thesis.

I am greatly indebted to my parents who have always supported and motivated

me to reach my goal. I would also like to appreciate my classmates for their

support. I extend my gratefulness towards the members of Distributed Systems

and Software Engineering (DSSE) research group for their knowledgeable insights

and constructive criticism on my work.

I am also thankful to the Ministry of Posts, Telecommunications and Informa-

tion Technology, Government of the Peoples Republic of Bangladesh for granting

me ICT Fellowship No - 56.00.0000.028.33.006.20-84; Dated 13.04.2021. Last but

not least, my special thanks to the Bangladesh Research and Education Network

(BdREN) for providing me with virtual machine facilities to carry out my thesis.

vi



List of Publications

1. “Understanding the Involvement of Developers in Missing Link Community

Smell: An exploratory Study on Apache Projects” in Proceedings of the 8th

International Workshop on Quantitative Approaches to Software Quality co-

located with APSEC, pp. 64-70, 2020.

2. “Understanding the Relationship between Missing Link Community Smell

and Fix-inducing Changes” in Proceedings of the 16th International Confer-

ence on Evaluation of Novel Approaches to Software Engineering (ENASE),

pp. 469-475, 2021.

3. “Impact of Community Smells on Software Maintainability” in 16th Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM), 2022. (Submitted)

vii



Contents

Approval ii

Dedication iii

Abstract iv

Acknowledgements vi

List of Publications vii

Table of Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution and Achievement . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Study 8
2.1 Software Development Community . . . . . . . . . . . . . . . . . . 8
2.2 Community Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Software Maintainability . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Empirical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Literature Review on Community Smells 17
3.1 Definition of Community Smell . . . . . . . . . . . . . . . . . . . . 18
3.2 Detection of Community Smell . . . . . . . . . . . . . . . . . . . . . 20
3.3 Impact of Community Smell . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Software Maintainability Metrics . . . . . . . . . . . . . . . . . . . 23
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



4 Developers’ Involvement in Missing Link Community Smell 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Missing Link Smell Detection . . . . . . . . . . . . . . . . . 30
4.2.2 Smelly Developers Identification . . . . . . . . . . . . . . . 31
4.2.3 Identifying Developers’ Contribution . . . . . . . . . . . . . 32
4.2.4 Fix-Inducing Changes (FIC) Detection . . . . . . . . . . . . 32
4.2.5 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . 33

4.2.5.1 Developer’s Contribution and Involvement in Miss-
ing Link . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.5.2 Number of Smelly Commits and FICs . . . . . . . 35
4.2.5.3 Bug Severity Analysis . . . . . . . . . . . . . . . . 35

4.3 Experiment and Result Analysis . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 38

4.3.2.1 Number of Developers Involved in Missing Link
Smell . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2.2 Relationship of Missing Link Smell with Devel-
oper’s Contribution . . . . . . . . . . . . . . . . . . 39

4.3.2.3 Relationship of Smelly Commits and FICs . . . . . 40
4.3.2.4 Bug Severity Analysis Result . . . . . . . . . . . . 42

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Relationship Between Community Smell and Software Maintain-
ability 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Detecting Community Smells . . . . . . . . . . . . . . . . . 50
5.2.2 Detecting Change-proneness . . . . . . . . . . . . . . . . . . 52
5.2.3 Detecting Fault-proneness . . . . . . . . . . . . . . . . . . . 52
5.2.4 Detecting Code Smells . . . . . . . . . . . . . . . . . . . . . 54
5.2.5 Object Oriented Metrics . . . . . . . . . . . . . . . . . . . . 55
5.2.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Experiment and Result Analysis . . . . . . . . . . . . . . . . . . . . 57
5.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 60

5.3.2.1 Change-proneness . . . . . . . . . . . . . . . . . . 62
5.3.2.2 Fault-proneness . . . . . . . . . . . . . . . . . . . . 63
5.3.2.3 Code Smells . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2.4 Object Oriented Metrics . . . . . . . . . . . . . . . 65

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



6 Conclusion 73
6.1 Involvement of Developers in Missing Link Community Smell . . . . 74
6.2 How Community Smells and Software Maintainability Metrics Are

Related . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 78

x



List of Tables

4.1 Kendall’s tau-b correlation coefficient interpretation . . . . . . . . . 34
4.2 Interpretation of the Spearman’s rank correlation coefficient . . . . 35
4.3 List of analysed projects . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Percentage of smelly developers . . . . . . . . . . . . . . . . . . . . 38
4.5 Result of correlation analysis between number of involvements in

missing link and number of commits . . . . . . . . . . . . . . . . . 39
4.6 Percentage of smelly committers per window . . . . . . . . . . . . . 40
4.7 Result of correlation analysis between the number of smelly com-

mits and FIC commits . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Bug severity of smelly FIC commits . . . . . . . . . . . . . . . . . . 42

5.1 List of considered code smells in this study . . . . . . . . . . . . . . 54
5.2 List of maintainability metrics . . . . . . . . . . . . . . . . . . . . . 55
5.3 List of analyzed software projects . . . . . . . . . . . . . . . . . . . 58
5.4 Result of the overall impact of community smells on software main-

tainability (n.s. means non-significant p-value) . . . . . . . . . . . . 60
5.5 Result of the impact of Organizational Silo on software maintain-

ability (n.s. means non-significant p-value) . . . . . . . . . . . . . . 61
5.6 Result of the impact of Lone Wolf on software maintainability (n.s.

means non-significant p-value) . . . . . . . . . . . . . . . . . . . . . 62
5.7 Result of the impact of Radio Silence on software maintainability

(n.s. means non-significant p-value) . . . . . . . . . . . . . . . . . . 63
5.8 Result of the impact of community smells on software maintainabil-

ity in small classes (n.s. means non-significant p-value) . . . . . . . 64
5.9 Result of the impact of community smells on software maintainabil-

ity in medium classes (n.s. means non-significant p-value) . . . . . . 65
5.10 Result of the impact of community smells on software maintainabil-

ity in large classes (n.s. means non-significant p-value) . . . . . . . 66
5.11 Result of community smell and code smell analysis . . . . . . . . . 67
5.12 Result of community smell and code smell in different sized classes . 67

xi



List of Figures

2.1 Developer Social Network (DSN) . . . . . . . . . . . . . . . . . . . 9
2.2 Collaboration network . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Communication network . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 ISO/IEC 25010 defined quality attributes of maintainability . . . . 13
2.5 Empirical research cycle . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The severity of bugs in smelly FIC commits . . . . . . . . . . . . . 43

5.1 Overview of the methodology . . . . . . . . . . . . . . . . . . . . . 50

xii



Chapter 1

Introduction

A software product can be thought of a combined effort of members who are in-

volved with its development. These members form a community which can be

defined as a software development community. In the development community,

developers communicate about the software development in the defined commu-

nication channel such as mailing list. For collaboration in the source code, they

use version control system like GitHub. While developing a software, communi-

cation and collaboration issues can arise among developers. These may lead to

the unforeseen project cost which is known as social debt [1]. These social and

organizational anti-patterns that have the potential of emerging the social debt

are defined as community smells [2]. For example, when a developer takes deci-

sions regardless of the opinion or suggestion from his peers, it is called missing

link smell. In this situation, developers work in the same source code but do not

communicate with each other. When such developers leave, it will be difficult to

accumulate required knowledge for a new developer to maintain that source code.

This chapter presents the motivation of the research. From this, the research

questions are formulated and how these questions can be addressed are discussed.

Next, the contribution and achievement of this work are described. Lastly, the

organization of this thesis is provided as a guideline to the readers.
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1.1 Motivation

In recent times, community smell related studies have gained a lot of attention in

software engineering research [3, 4, 5, 6]. This field of study incorporates organi-

zational and social aspects of the software development community with technical

aspects. The way in which developers interact with source code not only de-

pends on technical factors but also on inter-personal issues [4]. Thus, software

maintainability which is defined as the modification capability of a software [7],

may be affected when there are gaps in communication and collaboration among

developers.

Community smells are perceived harmful by developers for software develop-

ment and evolution [3]. Although these smells may not be an immediate obstacle

for software development, it can create problems in the long run. For example,

the knowledge gap created among developers due to community smells can make

it difficult to maintain the source code. Sometimes, to avoid community related

problems, developers prefer not to do work like refactoring code smells which can

improve maintainability [4].

As maintenance is a major part of the Software Development Life Cycle (SDLC)

and consumes more than half of the project costs [8], keeping the source code of

a software maintainable is necessary. For this reason, understanding how and to

which extent community smells have impact on software maintainability is impor-

tant for ensuring better maintainability. To identify the impact, community smells

needs to be related with metrics that represents the maintainability of the source

code. Therefore, observing the maintainability of source code that are affected by

community smells can yield an understanding of the impact of community smells

on software maintainability.

Existing researches have been studying community smells from different per-

spectives, such as definition [1, 2], detection [3, 9] and impact analysis [4, 10].
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Followed by the studies of definition, researchers have studied how to detect those

from project artifacts [3, 9, 11]. A few studies established the relationship be-

tween community smells and technical factors by predicting code smell intensity

[4] and bug [10] from community smells. The impact of community smells on

software maintainability as a whole is yet to be investigated. This thesis aims at

investigating the impact by relating developers’ involvement in community smell

with their contribution and bug introduction at first. Then, a detailed empirical

investigation is conducted by exploring how maintainability metrics differ in the

presence and absence of community smells.

1.2 Research Questions

The following research questions are formulated based on the above discussions:

• RQ: How do community smells impact software maintainability?

This research question will be addressed by answering the following sub-

research questions:

– SQ1: How does developers’ involvement in community smells relate to

their contribution in the project?

For answering this question, the involvement of developers in missing

link smells need to be identified by detecting this smell in the commu-

nity. For assessing the contribution of a developer, a measurement has

to be defined. To identify the impact, how the number of involvements

in missing link smell relate with the number of contribution can be in-

vestigated. The quality of contribution, that is, whether the contribu-

tion introduces bugs needs to be verified. To identify this relationship,

the number of contribution of involved developers and the number of

their bug introductions can be analysed.

3



– SQ2: How do software maintainability metrics differ between commu-

nity smells affected and unaffected classes?

To address this question, community smells need to be detected first.

Then, the measurement for software maintainability has to be defined.

Next, the relationship needs to be established between community

smells and maintainability metrics. The values of maintainability met-

rics have to be calculated from the source code for both affected and

unaffected software artifact, such as class. To determine which classes

are affected by community smells, the contribution activities of develop-

ers involved in community smells can be analysed. The change histories

from version control system can be used in this case [12]. To under-

stand whether the maintainability differs in the presence and absence

of community smells, the value of maintainability metrics need to be

compared using statistical analysis.

1.3 Contribution and Achievement

This research investigates the impact of community smells on software maintain-

ability through developer contribution, bug introduction and maintainability met-

rics. There are two major contributions of this work. The first contribution is that

it finds how developers’ involvement in community smells is related with software

maintainability, such as bug introduction and severity of bugs. The second contri-

bution is that it identifies classes affected by community smells are less maintain-

able compared to those that are not. The overall contributions of this research

are summarised as following:

1. Developers’ involvement in missing link smell negatively affects

software maintainability: Missing link community smells are detected

from project repositories and mailing lists. Developers are divided into two

4



categories, such as smelly and non-smelly developers. The developers in-

volved in any missing link smell are identified as smelly developers, other-

wise considered as non-smelly developers. The contribution of developers

is measured as the number of commits. Then, the correlation between the

number of involvements in smell and the number of contribution is analysed.

The percentage of developers who are involved in missing link smells is also

computed. Fix-Inducing Changes (FIC), changes that introduce bugs [13],

are used as the measure to examine whether developers involved in missing

link introduce bugs in the system. Furthermore, the correlation analysis is

performed between the number of smelly commits and the number of FIC

commits. The severity of bugs introduced by smelly developers are analysed

from bug repository.

The number of contribution is found positively correlated with the number

of involvements in missing link smells. It indicates that a developer who

contributes more in a project tends to have more missing link smells. The

number of FIC commits is also found positively correlated with the number

of smelly commits. It is evident that the number of bug introduction tends

to increase with the increase of involvements in missing link smell. More-

over, the bugs introduced by these smelly developers are severe enough to

cause major type of functionality loss in the project. This is inferred that

involvement of developers in missing link smell can affect software maintain-

ability negatively in the form of bug introduction. Chapter 4 describes this

study in detail.

2. Classes affected by community smells are less maintainable than

unaffected classes: Community smells are identified along with involved

developers analysing source code repository and mailing list archive. Based

on the involvement in these smells, developers are divided into smelly and
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non-smelly developers. Classes modified by smelly developers are identified

as smelly and non-smelly otherwise. The maintainability of these classes are

assessed using change-proneness, fault-proneness, code smells and ISO/IEC

25010 defined five quality attributes, such as modularity, reusability, ana-

lyzability, modifiability, and testability. To identify these quality attributes,

object-oriented metrics, such as complexity, coupling, etc., are used. Then,

the distribution of these metrics are compared using statistical analysis.

Smelly classes are found about 15 times more change-prone and 19 times

more fault-prone than non-smelly classes. These classes are 1.7 times more

likely to contain code smells compared to non-smelly classes. In terms of

object-oriented metrics, smelly classes are 56% more complex, 37% more

coupled, and 28% less documented on average. This is inferred that com-

munity smells have negative impact on software maintainability. A class

affected by community smell is less maintainable than a non-smelly class in

terms of maintainability metrics. The details of this study are presented in

Chapter 5.

1.4 Organization of the Thesis

This section provides an overview of the subsequent chapters. The chapters are

organized in the following way:

• Chapter 2 Background Study: The knowledge base is provided in this

chapter for understanding community smells and software maintainability.

The chapter starts with describing software development community and

related terminologies, such as communication and collaboration network.

The different types of community smells are presented with examples. Next,

software maintainability metrics are discussed. At the end, the different

stages of an empirical research are described.
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• Chapter 3 Literature Review of Community Smells: This chapter

presents the existing literature related to community smells and software

maintainability metrics. Studies related to community smells are categorized

into three categories namely definition, detection and impact of community

smells. Next, maintainability metrics related researches are discussed, fol-

lowed by the summary of the literature review.

• Chapter 4 Developers’ Involvement in Missing Link Community

Smell: This chapter presents how developers’ involvement in missing link

smell impact software maintainability in the form of their number of con-

tribution and bug introduction. At first, the methodology of the study is

described. Next, the dataset description and result analysis are provided.

Followed by this discussion, the threats to validity of the study are presented.

Finally, the chapter ends with the summary of the study.

• Chapter 5 Relationship Between Community Smell and Software

Maintainability: In this chapter, an empirical study is presented to iden-

tify the impact of community smells on different software maintainability

metrics, such as change-proneness, fault-proneness etc. Firstly, the method-

ology includes the working steps of the study. Next, the description of the

dataset is provided, followed by the results and discussions. After that, the

threats to validity of the study are described. The summary of the study is

provided at the end of the chapter.

• Chapter 6 Conclusion: In this chapter, the whole thesis is summarized

as well as the future work is presented.

7



Chapter 2

Background Study

This chapter provides basic terminologies to better understand the concepts of

community smells and software maintainability. As community smells occur in the

software development community, the different types of network in the community

are described first. Then, the definitions of community smells are provided with

the identification approaches from these developer networks. Next, the maintain-

ability metrics are described. Lastly, the process of an empirical study is presented

to better understand the research design of this thesis.

2.1 Software Development Community

The relationship and interaction between developers in a software development

community can be modeled through the network. The different types of network

in a development community are discussed below:

Developer Social Network (DSN): Developer Social Network (DSN) is

the network of a software development community where a node represents a

developer and an edge represents the relationship between two developers [14].

The relationship can be formed considering their communication, coordination,

etc. An example of DSN is illustrated in Figure 2.1. The upper part of the graph

represents communication and the lower part represents the collaboration among

8



developers. The developers are connected with a solid line if they communicate

with each other. The developers are connected to the file icon through a dashed

line if they contribute to that source code file.

</> </>

A

FB C E

D

           Communication
           Collaboration

</>

G

Figure 2.1: Developer Social Network (DSN)

Collaboration Network: A specific type of DSN which indicates the collab-

oration in a development community. Here, a node represents a developer who

contributes to the project in the version control system. Two developers are con-

nected through an edge if they contribute to the same part of the source code

within a given time frame [9]. Figure 2.2 represents an example of a collabora-

tion network. The technical structure of the software project is illustrated by this

network.

A

D

B E

C

F

G

Figure 2.2: Collaboration network

Communication Network: A specific type of DSN which indicates the com-

munication within the defined communication channel of a development commu-
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nity. Here, nodes represent developers who communicate in the defined communi-

cation channel such as mailing list. Two developers are connected through an edge

if they replied in the same e-mail within a given time frame [9]. A communication

network is illustrated in Figure 2.3. It depicts the organizational structure of the

development community in terms of its communication activities.

A

FB C E

D

Figure 2.3: Communication network

2.2 Community Smells

The social and organizational anti-patterns in the software development commu-

nity that lead to the emergence of social debt are known as community smells.

The description and identification patterns of four community smells, considered

in this study, are given below:

1. Organisational Silo: This smell occurs when there are siloed areas in

the software development community that do not communicate with other

members through the defined communication channel such as mailing list

[3]. To detect this smell, developers who have collaboration without any

communication need to be identified.

This smell can be identified by looking for developers who are present in the

collaboration network but missing in the communication network. For exam-

ple, the developer named G is present in the collaboration network (Figure

2.2) but absent in the communication network (Figure 2.3). Therefore, it is

an instance of organizational silo where developer G is involved.

10



2. Lone Wolf or Missing Link: This smell refers to the presence of such

developers who carry out their work without communicating their peers.

The situation arises when developers contribute to the same source code

but do not communicate with each other [3]. This smell can be identified

by detecting collaboration between two developers that do not have the

communication counterpart in defined communication channel, for example,

development mailing list [9].

By comparing the collaboration network with the communication network,

the instances of missing link can be detected. In Figure 2.2, there is a link

between developer C and D in the collaboration network. On the other

hand, there is no corresponding link between these two developers in the

communication network (Figure 2.3). Developer C and D are collaborating

on the same part of source code but they are not connected through any

communication link. Thus, this is considered as an instance of a missing

link between developer C and D.

3. Radio Silence or Bottleneck: This smell represents the situation when

one member of the community is involved in every formal interaction across

two or more sub-communities. Thus, there is little or no flexibility to intro-

duce other parallel communication channels between remaining members of

the sub-communities [4].

Figure 2.3 shows that there exist two sub-communities which are sub-community

A-B-C and D-E-F. A-B-C depends on the developer identified by letter C

for communication with D-E-F. On the other hand, D-E-F communicates

with A-B-C only through developer E. Thus, these incidents are identified

as the occurrences of radio silence or bottleneck effects and both developers

C and E are involved in these smells.
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4. Black Cloud: This smell denotes the information overload due to lack of

structured communication such as lack of periodic and official opportuni-

ties, for example, daily stand-ups to exchange knowledge among community

members [4].

There are two sub-communities present in the developer social network as

shown in Figure 2.3, sub-community A-B-C and D-E-F. In these two sub-

communities, developers denoted by letter C and E presents a unique con-

nection who are responsible for knowledge exchanging between these sub-

communities. Thus, this is identified as a potential black cloud and will

represent an effective instance of black cloud if the same incident occurs

time to time.

2.3 Software Maintainability

Software maintainability is the capability of software systems to be modified

for bug-fixing, improvements or adaption to changed environment, etc. [7]. In

the existing literature, maintainability is measured using change-proneness, fault-

proneness, code smell and ISO/IEC 25010 defined five quality attributes such as

modularity, reusability, analyzability, modifiability, and testability [15, 16, 17, 18,

19]. The definitions of these metrics are described below:

• Change-proneness: Change-proneness refers to the extent of change car-

ried out on a software artifact across releases and thus a useful metrics for

maintainability. A software artifact that changes frequently is more difficult

to maintain [20].

• Fault-proneness: Fault-proneness means the extent to which a software

artifact is prone to faults. Fault-prone software artifacts have less maintain-

ability as these have to go through frequent bug-fixing [21].
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• Code Smell: Code smell denotes the poor implementation choices applied

by developers. The maintainability of source code decreases, if it contains

code smells [22, 23]. This is because code smell needs refactoring during the

software evolution [24].

Maintainability

Modularity

Reusability

Analyzability

Modifiability

Testability

Figure 2.4: ISO/IEC 25010 defined quality attributes of maintainability

The quality attributes of maintainability defined by ISO/IEC 25010 are illus-

trated in Figure 2.4. The definitions of these attributes are given below:

1. Modularity: The modularity refers to the degree to which a software is

composed of distinct components. Thus, the system has minimal impact on

others while changing one component [25].

2. Reusability: Reusability means the extent to which an artifact can be used

in more than one software system [25]. That means whether the artifact can

be utilized in the same or the other system.

3. Analyzability: Analyzability implies the degree to which it is possible to

effectively assess the impact on intended change, or to identify the cause of

failure, or to identify parts to be modified [26].
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4. Modifiability: Modifiability refers to the degree of effectiveness and effi-

ciency of a software system to be changed without introducing bugs [27] or

degrading the current quality [25].

5. Testability: Testability assesses the degree to which the test criteria defined

for the system is effective and efficient [25].

All these five quality attributes have the positive relationships with software

maintainability. For example, the more modular a software system is, the easier

it is to maintain.

2.4 Empirical Research

Empirical researches have taken an important role in the field of software engi-

neering. It is essential for the software engineering domain, as it makes possible to

incorporate human perspectives into the research [28]. Empirical Software Engi-

neering (ESE) researches analyze software artifacts using qualitative and quanti-

tative approaches with a view to describing, explaining, evaluating, maintaining,

and monitoring these artifacts [29].

Observation

Induction

DeductionTesting

Evaluation

Figure 2.5: Empirical research cycle
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According to A.D. de Groot, an empirical research has to go through a cy-

cle which has five stages [30]. These five stages are shown in Figure 2.5. The

description of each stage is provided below:

1. Observation: The specific phenomenon is observed and concerning causes

are inquired in this stage. During this initial stage, an idea is triggered

to form hypothesis. Observations generally come from previous research

findings.

2. Induction: Induction is then used to form a hypothesis. In this stage, a

general probable conclusion is made by inductive reasoning based on the

observation. This rule or hypothesis is not necessarily true. It can be false

which will be tested in the subsequent stages of the cycle.

3. Deduction: This stage involves the formulation of experiment that will test

the hypothesis. Empirical studies can be broadly divided into two categories

which are qualitative and quantitative. In the software engineering domain,

quantitative method is the most widely used scientific method [31]. Quanti-

tative research generates numerical data for analysis and applies mathemat-

ical or statistical methods to accept or reject hypothesis.

4. Testing: In this stage, the hypothesis is tested using statistical methods on

the collected data. Based on the nature of the data, appropriate statistical

tests are selected.

5. Evaluation: This is the final stage in an empirical research. The experiment

and tests that are performed in the previous stages are evaluated in this

stage. The observed results are interpreted and discussed with justifications.

Finally, the conclusion is derived based on the findings of the research with

supporting arguments.
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2.5 Summary

In this chapter, the knowledge base is created for understanding community smells

and software maintainability. First, the software development community is de-

scribed with associated terms such as developer network, communication and col-

laboration network. Next, the definitions of different types of community smells

are provided and how these smells occur is illustrated with a sample development

community. After that, the terminologies related to software maintainability met-

rics such as change-proneness, fault-proneness, etc. are presented. Based on the

concepts presented in this chapter, the existing literature related to community

smells and software maintainability will be reviewed in the next chapter.

16



Chapter 3

Literature Review on Community

Smells

In recent times, community smell related studies have gained attention in software

engineering research. The objective is incorporating the organizational and social

aspects of the software development community. From the literature review, stud-

ies related to community smells are divided into three categories such as definition

of community smells, detection and prediction of community smells and impact

of community smells on software artifacts. Some studies [1, 2] focused on defin-

ing different types of community smells while others focused on detecting these

smells in open-source projects [3, 9]. Besides, a few studies [32, 33, 34] focused

on community smells prediction. Moreover, the relationship and the impact of

community smells on different software artifacts, such as code smell and bug, have

also been studied by the research community [4, 10].

The literature related to community smells based on the above categories and

literature related to software maintainability metrics are discussed in the following

sections.

17



3.1 Definition of Community Smell

The concept of community smell, also called organizational and social anti-pattern,

is first introduced by Tamburri et al. [2]. The authors conducted a survey-based

qualitative study in a large software company to identify the anti-pattern that

causes social debt that is unforeseen project costs. They observed the develop-

ment scenario over the period of six months. In this time, the authors conducted

several interviews to collect data from the employees. They analysed the collected

data using Grounded Theory [35] to identify core concepts that revolve around

social debt. Authors defined a social debt framework depicting these concepts

and their role in social debt. To represent the causality, they applied an empiri-

cal causal model named 6C model [2]. Based on the analysis, authors recognized

nine such circumstances and defined these as community smells. These are Or-

ganizational Silo Effect, Black Cloud Effect, Prima-donnas Effect, Leftover-techie

Effect, Sharing Villainy, Organisational Skirmish, Architecture Hood Effect, Solu-

tion Defiance and Radio Silence. The short descriptions of these smells are given

below:

1. Organizational Silo effect: is the existence of disconnected regions of the

software developer community that do not communicate.

2. Black-cloud effect: represents the lack of people who can minimize the knowl-

edge and experience gap between community members as well as the absence

of effective knowledge sharing for example regular stand-up meetings.

3. Prima-donnas effect: is the existence of developers who show egotistical

behavior and are not supportive to other developers.

4. Leftover-techie effect: occurs when mistrust is created among the technicians

in the development community as a result of increased isolation.
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5. Sharing villainy: refers to the situation when outdated, unverified or misin-

formation are spread by developers.

6. Organisational Skirmish: occurs when the organizational culture is not aligned

between the development and operation unit.

7. Architecture hood effect: implies the situation when nobody take responsi-

bility to lead the implementation according to the decision of architectural

board.

8. Solution defiance: is the presence of divided groups of developers who have

the opposite viewpoints regarding socio-technical or technical decisions.

9. Radio-silence: occurs when one member is present in every formal engage-

ment among two or more sub-communities. Thus, the flexibility to create

other channel for communication among the remaining members becomes

difficult.

The authors also identified six recurrent decisions that helped in reducing

community smells. These decisions are suggested as mitigation techniques to avoid

the negative effects of community smells. The suggested mitigation techniques are

as follows:

• Full-circle to mitigate leftover-techie

• Learning Community to mitigate radio-silence

• Culture conveyors to mitigate prima-donnas and sharing villainy

• Stand-up voting to architecture-hood

• Community-based contingency planning to mitigate prima-donnas and so-

lution defiance

• Social wiki to mitigate prima-donnas, solution defiance, black-cloud effect,

sharing villainy and organisational silo effect
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3.2 Detection of Community Smell

Tamburri et al. [3] defined the identification pattern of four community smells

which are Organizational Silo, Lone Wolf or Missing Link, Bottleneck or Radio

Silence, and Black Cloud.

1. Organizational Silo: Organisational Silo Effect is identified by looking for

community members who collaborate in the source code with other devel-

opers but do not communicate within the analysed communication channel,

for example, mailing list.

2. Lone Wolf or Missing Link: Missing Link Community Smell is identified

by detecting a pair of developers that do not have communication but they

collaborate in the same source code.

3. Bottleneck or Radio Silence: Black-cloud Effect Community Smell is de-

tected by on the identifying sub-communities that communicate with the a

unique communication link in consecutive time periods.

4. Black Cloud: Radio Silence Community Smell is detected by looking for

community members who act as a unique knowledge and information ex-

changers for different sub-communities.

The authors conducted an empirical study on 60 open-source projects and found

that community smells are highly diffused in these projects. The study also inves-

tigated how developers perceive about community smells through interview. The

developers involved in these projects recognized community smells as relevant

problems for software evolution. They also identified the relationship between

community smells and socio-technical factors such as socio-technical congruence,

turnover, truck factor, etc. A number of socio-technical indicators, for example,

socio-technical congruence, are found to be correlated with community smells.

These indicators can be used to monitor community health and to avoid possible
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emergence of social debt. In their study, the authors developed an open-source tool

named Codeface4Smells1 to detect community smells from the project repository

and mailing list. The availability of such a tool enabled the research community

to further investigate the impact of community smells.

Besides detection, a few studies [32, 33, 34, 36] tried to predict the community

smells. Palomba et al. [32] built a model to predict the emergence of community

smells using socio-technical metrics. Almarimi et al. [33] proposed a model to

predict community smells using Ensemble Classifier Chain (ECC) and Genetic

Programming (GP) techniques. Huang et al. [37] built a community smells pre-

diction model on individual developers using their sentiment.

3.3 Impact of Community Smell

Palomba et al. [4] first investigated the relationship between community smells

and code smells. The authors conducted an empirical study on 117 releases of 9

open-source projects using mixed-method (qualitative and quantitative) approach

[38]. They surveyed 162 concerned developers to investigate their perception on

the relationship between community smells and code smells. They found that

community smells can influence the maintenance decision such as refactoring code

smells. In several cases, developers preferred to keep code smells rather than

dealing with community smells. They also investigated the impact of community

smells on code smell intensity. They proposed a code smell intensity prediction

model using community smells which performed better than a model that did

not consider community-related information. The study provided the empirical

evidence that community-related circumstances can affect the way developers act

in the source code, and community smells should be taken into account while

studying the software maintainability.

1http://siemens.github.io/codeface
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Eken et al. [10] investigated the effect of community smells on bug predic-

tion. They conducted an empirical analysis on 10 open-source projects to examine

whether community smells contribute in predicting bug-prone classes. The authors

built seven different bug prediction models such as a baseline model including the

state-of-the-art metrics (code churn, number of developers etc.). Three models in-

cluding community smells, code smells and code smell intensity individually into

the baseline model and three other models including the combination of these smell

related metrics. The result shows that the baseline model is improved up to 3%

in terms of AUC by community smells while code smell intensity improves it by

up to 40%. The authors compared their community-aware bug prediction model

with the state-of-the-art models that consider code smell, code smell intensity

and other process metrics such as code churn, number of developers etc. They

found community smells and code smells are the good indicators in predicting

bug-prone classes by revealing communication and collaboration flaws in software

development teams. The finding of the study implies that most of the information

about technical flaws are captured by code smell intensity while predicting bugs.

Besides, incorporating community smells can contribute in bug prediction by pro-

viding information about communication and collaboration flaws. This indicates

that social aspects need to be considered with technical factors while studying the

software system.

Catolino et al. [5] analysed the role of gender diversity and women’s participa-

tion in community smells. They compared the distribution of community smells

between gender-diverse team and non-gender-diverse team. To examine how the

presence of women influences the number of community smells, a statistical model

is built by relating community smells with the measure of gender-diversity. They

used the Blau-Index [39] to measure the diversity. The finding of the study shows

that gender-diverse teams have significantly fewer community smells compared to

non-gender-diverse teams. The result reveals that gender diversity and women par-
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ticipation are significant factors for community smells and the presence of women

in teams can reduce the number of community smells.

Later, a survey based empirical study is conducted [40] to explore strategies

adopted by developers to deal with community smells. They inquired 76 develop-

ers about four community smells and their action in removing these smells. Based

on the collected data, authors suggested some refactoring strategies to deal with

community smells such as mentoring, creating communication plan and restruc-

turing the development community.

In another study, Catolino et al. [6] investigated how the variability of com-

munity smells, that is, the increase or decrease of community smells, is related to

socio-technical metrics. They built a statistical model on the dataset of 60 open-

source projects containing four types of community smells such as Organizational

Silo, Black Cloud, Lone Wolf, and Radio Silence and 40 socio-technical metrics

such as turnover, communicability, truck factor, etc. The results of the study

report that communicability metrics are the most important factors to reduce

the emergence of community smells. On the other hand, increasing collaboration

network is not always effective to decrease community smells.

3.4 Software Maintainability Metrics

Software maintainability is the capability of software systems to be modified for

bug-fixing, improvements or adaption to changed environment etc. [7]. Palomba

et al. [15] investigated the impact of code smells on software maintainability. The

authors conducted an empirical study on 395 releases of 30 open-source projects.

They analysed the diffuseness of code smell in these projects. The authors iden-

tified classes that are affected by code smells. In this case, they considered 13

well known code smells. The maintainability of classes is measured in terms of

change-proneness and fault-proneness of the class. This study explored whether
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classes affected by code smells exhibit significant difference in change and fault-

proneness. Most of the analysed code smells are found highly diffused in the

evaluated projects. Classes that are affected by code smells show statistically

significant higher change and fault-proneness than classes those are not affected.

Zhang et al. [19] assessed software maintainability based on 39 code metrics.

There are five quality attributes of software maintainability defined in ISO/IEC

25010, such as modularity, reusability, analyzability, modifiability, and testability.

In this study, 39 class level metrics related to these attributes were considered to

measure different aspects of maintainability. These metrics were further grouped

into six groups based on the work of Kontogiannis et al. [41] which are com-

plexity, coupling, cohesion, abstraction, encapsulation, and documentation. These

categories are related with five quality attributes of maintainability, for exam-

ple, low complexity of a class indicates high analyzability and modifiability, low

coupling improves analyzability and reusability, high cohesion increases modular-

ity and modifiability, high abstraction enhances reusability, high encapsulation

implies high modularity, and documentation might contribute to analyzability,

modifiability, and reusability.

3.5 Summary

This chapter discusses the existing studies related to community smells and soft-

ware maintainability metrics. Community smells have been explored from different

perspectives by the research community. These can be categorized into definition

of community smells, detection and prediction of community smells, and impact

analysis of community smells. Some researchers [1, 2] worked on defining dif-

ferent types of community smells while others focused on detecting these smells

[3, 9]. Besides, separate studies [32, 33, 34] explored how community smells can

be predicted from socio-technical metrics. The prediction of community smell on
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individual developers based on their sentiment has also been studied [37]. These

studies have improved the understanding of community smells and encouraged

further research in this field to investigate the impact of community smells. A few

works established the relationships between community smells and some technical

factors such as code smell intensity and bug [3, 4, 10]. These studies provided the

empirical evidence that community-related circumstances can affect the way devel-

opers act in the source code, and community smells should be taken into account

while studying the software systems. On the other hand, to asses software main-

tainability, existing literature used different metrics such as change-proneness and

fault-proneness [15]. Some other studies used object-oriented metrics to identify

the quality attributes of maintainability [19, 41]. Although the impact analysis on

some specific technical factors has been studied so far, the relationship between

community smells and software maintainability is yet to be investigated. In the

next chapter, an empirical study is presented on how developers’ involvement in

community smell impact software maintainability.
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Chapter 4

Developers’ Involvement in

Missing Link Community Smell

Community smells can be defined as organizational and social anti-patterns in a

development community. This can affect software maintenance by the means of

lacking mutual awareness, mistrust and knowledge gap among developers. Ex-

isting studies have observed the relationship of community smell with different

socio-technical factors such as socio-technical congruence, turnover, etc. This

chapter focuses on how many developers are involved in community smells such

as missing link and how this involvement impact software maintainability in the

form of their contribution and bug introduction in the project. To do so, missing

links and developers who are involved in these smells are detected. From this, the

percentage of developers involved in community smells are identified. A correla-

tion analysis is performed between the number of contributions and the number

of involvements in missing link smells of the developer. To understand the quality

of contribution, the relationship between smell and Fix-Inducing Changes (FIC),

changes that introduce bugs, is investigated. It is observed that the percentage

of smelly developers involved with missing link smell is 8.7% on average. The

result also suggests a moderate positive correlation between the contribution of a
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developer and the involvement in missing link smell. The number of FIC commits

is found positively correlated with the number of smells. Furthermore, it is found

that bugs introduced in smelly commits are mostly Major type in terms of severity

which denotes that community smell has an impact on maintenance.

4.1 Introduction

Community smells are the organizational and social anti-patterns in a development

community [2]. These may lead to the emergence of social debt which indicates

unforeseen project costs connected to a sub-optimal software development commu-

nity. Although community smells may not be an immediate obstacle for software

development, these have the potential to affect software maintenance negatively

in the long run [4]. Missing link is one of the most commonly reported commu-

nity smells which occurs if developers do not communicate with each other while

working collaboratively [9].

Missing link community smell implies the lack of communication among de-

velopers that can create knowledge gap in the community [3]. A software product

can be thought of as the combined effort of all developers. So, the lack of commu-

nication and cooperation can negatively affect mutual awareness and trust among

developers [9]. It is important to know how many developers are involved in miss-

ing link as they may affect the whole project. Analyzing the characteristics of these

developers will help the project managers to take steps such as task reassigning,

team reformation, increasing awareness, etc., to keep communication issues lower

among the developers. Besides, previous studies found that community smells

including missing link smell are related to code smells [11] and have an impact on

code smell intensity [4, 42]. Since code smells are found to be successful indicators

of maintainability in the form of bugs in software systems [15, 17], the relationship

between community smells and bugs needs to be investigated.
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In previous studies, the definition and detection of missing link smell in open-

source projects have been studied. A few studies have explored the impact of

missing link smell on different software artifacts such as code smell. Magnoni

proposed the identification pattern of missing link community smell [9]. Tamburri

et al. examined the relationship between community smells and different socio-

technical factors, for example, socio-technical congruence, turnover, etc. [3]. They

considered missing link, organizational silo, black cloud and radio silence commu-

nity smell. Palomba et al. investigated the impact of missing link smell and four

other community smells on code smell intensity [4]. Catolino et al. analyzed the

role of four community smells including missing link smell on gender diversity and

women’s participation in open-source communities [5]. However, developers’ in-

volvement in missing link smell and how their contributions are affected by missing

link smell have not been analyzed yet.

In this context, the current study aims to identify how many developers are

involved in missing link smell and whether their involvement impact the mainte-

nance in the form of contributions and bug introduction. To do so, the relationship

between missing link smell and Fix-Inducing Changes (changes that introduce er-

ror into the system) are investigated. For analysis, seven diverse and open-source

projects such as ActiveMQ and Cassandra are selected based on several criteria

(for example, availability of developer mailing list). First, missing link smells are

identified in each project finding cases where a collaboration link does not have

its communication counterpart. Then, the developers involved with each smell are

identified by extracting the instance of smell. Commits that have been submitted

by developers involved in missing link smell are marked as smelly commits. The

percentage of developers involved with missing link smell is calculated to check

whether a subset of developers is involved with this type of smell. Then the corre-

lation is investigated between the contribution of developers and their involvement

in missing link smells. Commits that represent FIC are identified by analyzing
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the project repository. Finally, a correlation analysis is performed between the

number of smelly commits and FIC commits using Spearman’s rank correlation

coefficient [43]. To understand the severity of bugs that are introduced by devel-

opers who are involved in missing link smell, FIC commits that are submitted by

smelly developers have been linked to the bug repository. After linking FIC to the

bug repository, the information of severity is extracted from the bug report.

The results of the study show that a small part of the total developers is

involved with missing link community smell. On average, 8.7% of the total devel-

opers of a project are involved with missing link smell. This study also finds a

significant moderate positive correlation between the developer contribution and

their involvement in missing link smell. The result of the study shows that there is

a significant positive correlation between the number of smelly commits and FIC

commits. The study also finds that bugs occurring in smelly commits are related

to major loss of functionality. In the following sections, the details of the study

are presented.

4.2 Methodology

This study aims at understanding how many developers of a project are involved

in missing link smell. This study also wants to assess the relationship between a

developer’s contribution and involvement in missing link smell. To understand the

quality of contribution, the relationship between missing link smell and bug intro-

duction is also investigated in software projects. First, the missing link smell is

detected for all the selected projects. Then, the percentage of smelly developers is

retrieved for each project. Later, correlation analysis is performed between a devel-

oper’s contribution and involvement in missing link smell. Next, the Fix-Inducing

Changes (FIC) are identified from the project repository by finding erroneous code

changes that induce a fix later. Finally, the relation between smelly commits and

29



FIC commits are analysed. The details of each step are provided in the following

subsection.

4.2.1 Missing Link Smell Detection

The first step is to identify missing link smell from source code repository and

mailing list. To detect missing link smells, a temporal window needs to be fixed

as software community changes over time. Six-month analysis window is used in

this case so that substantial changes can be found to analyse. For every analysis

window of a project, a communication network is built for that window by exam-

ining the mailing list of the project. All messages in the mailing list of a project

are analysed and developers who replied in the same email within that window

are connected in the network. Developer mailing list is considered for the source

of communication as it is the main communication platform for an open-source

project [44]. For example, the contribution guideline of a popular open-source

project of Apache1 states,

“Discussions at Apache happen on the mailing list”.

Next, a collaboration network is generated analysing the project’s GitHub

repository. All commits are analyzed and developers who contribute to the same

part of source code within that window are connected through an edge. Thus, the

communication network is constructed by extracting communication data from

development mailing list and the collaboration network is generated by extract-

ing collaboration data from the project repository. After having both of these

networks, for each edge in the collaboration network, the corresponding communi-

cation part is searched in the communication network. Any edge that is present in

the collaboration network but absent in the communication network is identified

as missing link smell.

1https://mahout.apache.org/developers/how-to-contribute
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An open-source tool, Codeface4Smells [45], is used to detect missing link com-

munity smell. Missing link smells are identified in the aforementioned way from

project repository and development mailing list. The source code repository and

mailing list archive are provided as input and a list of missing link instances for

each window of the project are found as output. The developers involved with

these smells will be identified in the next step.

4.2.2 Smelly Developers Identification

An instance of missing link smell consists of two collaborating developers who do

not communicate with each other. Thus, for every missing link smell, there are

two involved developers. A developer who is involved in any missing link smell

is considered as a smelly developer. On the other hand, a non-smelly developer

is one who is not involved in any missing link smell. The smelly developers of a

project x can be denoted by a set SDx. The number of smelly developers of the

project will be the number of elements in SDx.

To calculate the percentage of smelly developers in a project, the total num-

ber of developers of that project is required. The total number of developers is

computed as the sum of the number of developers who are involved in either col-

laboration or communication network. That means the developers who contribute

to the source code in the repository and who communicate on mailing list both

are considered [9]. The percentage of smelly developers of a project is calculated

using Equation 4.1.

percSDx =
numSDx

totalDevx
× 100%, (4.1)

where numSDx is the number of smelly developers in project x and totalDevx is

the number of total developers in the same project.
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4.2.3 Identifying Developers’ Contribution

In open-source projects, commits are the most representative form of coding con-

tribution [36]. So, the contribution of a developer in a project is measured by the

number of commits of that developer in that repository. The number of commits

of every individual developer is retrieved by analysing the source code repository

using git command.

All the commits of a smelly developer are identified as smelly commits. For

each smelly developers, the number of smelly commits are calculated analysing

the change history. Along with these, how many times a developer involved in

missing link smell are also computed. The number of contribution and the number

of smelly commits are used in the next step to correlate with missing link smell.

4.2.4 Fix-Inducing Changes (FIC) Detection

To understand the bug introduction by developers involved in missing link, Fix-

Inducing Changes (FICs) are used. FICs are the erroneous changes to the code

that induce fixes in the future. It is used to identify the contribution quality of

developers who are involved in missing link smells. To find FIC, the following

steps are followed:

The first step of detecting FIC is finding changes that fix a bug, called the

Fixing Changes (FC). To find the FCs, all commit messages are extracted from

the project repository. Then, commit messages are searched for keywords - “Fix”,

“Bug”, “Patch” including their past and gerund form. These commits indicate

bug fixing activities and are labeled as FC commits. Next, changes made in each

FC commit are extracted comparing with its immediate parent commit. Diffj

tool [46] is used to obtain the location of changes, that is modified or deleted line

numbers. The white space or other formatting changes are ignored so that the

possibility of finding false FICs can be mitigated [47]. Finally, the origin of these
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change locations is tracked using git-blame2 command. This command is used

to identify which commit is responsible for the latest changes made to a specific

line of a file. This leads to the commit that introduces the bug that is FIC. The

process of detecting FIC adopted in this study is similar to [48, 49]. Both FIC

and the corresponding FC commits are stored for analysis in the subsequent step.

4.2.5 Correlation Analysis

After collecting required data according to the steps described above, the analysis

is performed from three perspectives. First, the relationship is investigated be-

tween a developer’s contribution and their involvement in missing link smell. Next,

the correlation analysis is performed between the number of smelly commits and

FICs. Finally, the severity of bugs that are introduced by smelly developers are

analysed.

4.2.5.1 Developer’s Contribution and Involvement in Missing Link

To identify the relationship between a developer’s contribution and involvement in

missing link smell, the correlation is performed between following two measures:

1. how many commits a developer has in the project repository

2. how many times a developer is involved in missing link smell

Both the number of commits and the number of involvement in smells of a

developer can vary due to project and community size. So, these are converted

into percentage to achieve the relative measurement. The commit percentage of a

developer is calculated using Equation 4.2.

percentCommit =
numCommiti∑n
i=1 numCommiti

× 100% (4.2)

2https://git-scm.com/docs/git-blame
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where numCommiti is the number of commits of developer i and n is the total

number of smelly developers.

Equation 4.3 is used to calculate the percentage of involvement in missing link

smell for a developer.

percentMissingLink =
numMissingLinki∑n
i=1 numMissingLinki

× 100% (4.3)

where numMissingLinki is the number of involvement in missing link smells

of developer i and n is the total number of smelly developers.

Finally, the correlation analysis is performed between percentCommit and

percentMissingLink for each project individually. Kendall’s tau-b [50] is used to

assess the degree of association between these two variables. Both percentCommit

and percentMissingLink have tied values in the dataset. As Kendall’s tau-b

can handle tied ranks, this is used for the correlation analysis. The correlation

coefficient is considered significant if the obtained p-value is less than 0.01, which

is widely used in software engineering empirical researches [31]. The correlation

coefficient is interpreted according to Table 4.1. The coefficient, τb, indicates the

strength of the correlation. τb has a range of value from -1.0 to 1.0. As τb closes to

0, it indicates less correlation between two variables. As τb approaches to -1.0 or

+1.0, the strength of correlation between two variables is increased. The positive

value of τb indicates a positive correlation and the negative value of τb indicates a

negative correlation between two variables.

Table 4.1: Kendall’s tau-b correlation coefficient interpretation

Correlation Coefficient
(Negative)

Correlation Coefficient
(Positive)

Interpretation

-0.4 < τb ≤ 0.0 0.0 ≤ τb < 0.4 Weak
-0.7 < τb ≤ -0.4 0.4 ≤ τb < 0.7 Moderate
-0.9 < τb ≤ -0.7 0.7 ≤ τb < 0.9 Strong
-1.0 ≤ τb ≤ -0.9 0.9 ≤ τb ≤ 1.0 Very Strong
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4.2.5.2 Number of Smelly Commits and FICs

To understand the direction of the relationship between the number of smelly

commits and the number of FICs, correlation analysis is conducted. As a mono-

tonic trend is observed between these two variables, Spearman’s rank correlation

[43] method is chosen. A monotonic trend implies both variables tend to increase

together and decrease together, or the opposite, but not exactly at a constant

rate like a linear relationship. In Spearman’s rank correlation coefficient, the rela-

tionship between two variables can be assessed using a monotonic function. The

interpretation of the correlation coefficient is adapted from [51] and displayed in

Table 4.2. The correlation coefficient, ρ, indicates the strength of the correlation.

The value -1 or +1 means a perfect relationship and 0 means no relationship be-

tween two variables. As the value approaches -1 or +1, it indicates more strong

correlation. A value closer to 0 indicates a weaker relationship. The positive value

indicates a positive correlation whereas the negative value indicates a negative

correlation. The correlation coefficient is considered significant in this study if the

p-value is less than 0.01.

Table 4.2: Interpretation of the Spearman’s rank correlation coefficient

ρ (Negative) ρ (Positive) Interpretation
ρ = 0 ρ = 0 Zero

-0.4<< 0.0 0.0<≤ 0.4 Weak
-0.7<≤ −0.4 0.4≤< 0.7 Moderate
-1<≤ −0.7 0.7≤< 1 Strong
ρ = -1 ρ = 1 Perfect

4.2.5.3 Bug Severity Analysis

To understand the severity of bugs that are introduced while developers are in-

volved in missing link smell, smelly FIC commits are analysed. For every smelly

FIC commit, the corresponding FC commits are identified from the mapping

stored in FIC detection step. Only those FC commits are considered that contain
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bug ID in their commit message as without this it can not be linked to bug repos-

itory. The corresponding bug report is retrieved from the bug repository using

that bug ID. Thus, smelly FIC commits are linked to the bug repository and the

severity of bugs introduced in these commits can be known.

4.3 Experiment and Result Analysis

According to the procedures described in the above sections, the experimentation

is performed. The following subsections provide the description of the dataset and

discuss the obtained results.

4.3.1 Dataset

This study aims at investigating the relationship between missing link smell and

developers’ contribution. To perform the analysis, the study needs some specific

software artifacts such as collaboration information, communication information

and bug severity information. Thus, the choice of the subject systems for this

study is guided by the following factors:

1. Publicly available source code hosted in version control system

2. Publicly available archive of Developer mailing list

3. Bug repository maintaining the information of bug severity

Therefore, seven open-source projects from Apache ecosystem are selected for

analysis considering the above criteria. The name of the selected projects is pro-

vided in Table 4.3 with their source code repository, mailing list and analysis

period. These projects are hosted in the online version control system GitHub.

The development mailing list archive is available on Gmane [52]. All the selected

projects use Jira [53] as the issue tracker. Projects of different ages and sizes are

36



T
ab

le
4.
3:

L
is
t
of

an
al
y
se
d
p
ro
je
ct
s

#
P
ro

je
ct

S
o
u
rc
e
C
o
d
e

M
a
il
in
g
L
is
t

A
n
a
ly
si
s
P
e
ri
o
d

1
A
ct
iv
eM

Q
gi
th
u
b
.c
om

/a
p
ac
h
e/
ac
ti
ve
m
q

gm
an

e.
co
m
p
.j
av
a.
ac
ti
ve
m
q
.d
ev
el

A
p
r-
20
06

-
D
ec
-2
02
0

2
C
as
sa
n
d
ra

gi
th
u
b
.c
om

/a
p
ac
h
e/
ca
ss
an

d
ra

gm
an

e.
co
m
p
.d
b
.c
as
sa
n
d
ra
.d
ev
el

O
ct
-2
00
9
-
S
ep
-2
02
0

3
C
ay
en
n
e

gi
th
u
b
.c
om

/a
p
ac
h
e/
ca
ye
n
n
e

gm
an

e.
co
m
p
.j
av
a.
ca
ye
n
n
e.
d
ev
el

N
ov
-2
00
7
-
A
u
g-
20
20

4
C
X
F

gi
th
u
b
.c
om

/a
p
ac
h
e/
cx
f

gm
an

e.
co
m
p
.a
p
ac
h
e.
cx
f.
d
ev
el

N
ov
-2
01
0
-
S
ep
-2
02
0

5
J
ac
k
ra
b
b
it

gi
th
u
b
.c
om

/a
p
ac
h
e/
ja
ck
ra
b
b
it

gm
an

e.
co
m
p
.a
p
ac
h
e.
ja
ck
ra
b
b
it
.d
ev
el

D
ec
-2
00
5
-
S
ep
-2
02
0

6
M
ah

ou
t

gi
th
u
b
.c
om

/a
p
ac
h
e/
m
ah

ou
t

gm
an

e.
co
m
p
.a
p
ac
h
e.
m
ah

ou
t.
d
ev
el

O
ct
-2
00
8
-
A
u
g-
20
20

7
P
ig

gi
th
u
b
.c
om

/a
p
ac
h
e/
p
ig

gm
an

e.
co
m
p
.j
av
a.
h
ad

o
op

.p
ig
.d
ev
el

O
ct
-2
01
0
-
A
u
g-
20
20

37



chosen for analysis. The age of the selected projects ranges from 10 to 15 years

and the number of commits ranges from 2,451 to 17,098.

4.3.2 Results and Discussions

This section presents the results obtained from the experimentation described

above. The analysis and discussion of the results are elaborated in the following

subsections.

4.3.2.1 Number of Developers Involved in Missing Link Smell

Table 4.4 demonstrates the percentage of smelly developers for each project. For

example, Apache Cassandra project has 1380 total developers and 205 smelly

developers, which is 14.9% of total developers. It is observed that on average

10.5% of total developers of a software community are involved in missing link

smells. Apache Cayenne community has the highest percentage of smelly de-

velopers (21.1%). This is also the smallest community among 7 communities.

Tamburri et. al. found that the number of community smell grows quadratically

with the number of community members until the threshold of 200 community

members [3]. The occurrences of community smell tend to stabilize after this

threshold. As the number of total developers in Apache Cayenne community is

less than 200, the number of missing link smell has not been stabilized yet. So,

Table 4.4: Percentage of smelly developers

# Project
Total

Developers
Smelly

Developers
Smelly

Developers(%)
Average

1 Cassandra 1380 205 14.9%

8.7%

2 CXF 972 94 9.7%
3 Jena 244 34 13.9%
4 Mahout 615 28 4.6%
5 Pig 668 22 6.0%
6 Jackrabbit 927 28 3.0%
7 Cayenne 175 37 21.1%

Average 668 64 10.5%
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this project has relatively more missing link smell and consequently more smelly

developers. Excluding Apache Cayenne project, the rest six projects have 8.7%

smelly developers on average.

These results suggest that only a small portion of developers in an open-source

software community are involved with missing link smells. They do not commu-

nicate appropriately with their co-committing or collaborative developers. Thus,

they contribute to the total number of community smells in a software community.

4.3.2.2 Relationship of Missing Link Smell with Developer’s Contri-

bution

First, the correlation analysis is performed individually for each development com-

munity. The Kendall’s tau-b coefficients and p-values are provided in Table 4.5.

For example, the correlation coefficient for Apache Cassandra project is 0.508 and

it represents a moderate positive correlation. The value of correlation coefficient

is significant with a p-value less than 0.01. All seven projects of this study show a

moderate positive correlation between number of commits and number of smells

which is statistically significant with p<0.01.

Another correlation analysis is performed after combining the data from all

the projects. The value of the correlation coefficient is slightly increased to 0.612

but still falls under the range of moderate positive correlation. This result is also

Table 4.5: Result of correlation analysis between number of involvements in miss-
ing link and number of commits

# Project Tau-b p-value
1 Cassandra 0.508 <0.01
2 Cayenne 0.543 <0.01
3 CXF 0.528 <0.01
4 Jackrabbit 0.589 <0.01
5 Jena 0.452 <0.01
6 Mahout 0.409 <0.01
7 Pig 0.513 <0.01

Overall 0.612 <0.01
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statistically significant with a p-value less than 0.01.

These results suggest that the number of involvements in missing link smell

increases with the number contributions. A developer who contributes more in a

project tends to have more missing link smells. This can happen because develop-

ers with more contribution have to communicate more with other developers. The

overload of communication is a problem in satisfying the required communication

needs for these developers. However further analysis is required to find out the

causes of involving in more smells.

4.3.2.3 Relationship of Smelly Commits and FICs

To get an idea regarding the proportion of developers involved in missing link smell,

the ratio of smelly committers to total committers is calculated. Table 4.6 shows

the ratio of smelly committers per six-month analysis window for each evaluated

project. The first column shows the name of the project, the second column

shows the number of windows analysed in each project. The average number of

committers and smelly committers are presented in the third and fourth columns.

Finally, the ratio of smelly committers to total committers is shown in the last

column. The result suggests that on average 53% committers are involved in

missing link smell per window.

Table 4.6: Percentage of smelly committers per window

# Project
#Analysed
Windows

Avg.
#committers

Avg.
#Smelly

Committers
Ratio

1 ActiveMQ 30 13.27 7.17 0.54
2 Cassandra 26 6.85 4.00 0.58
3 Cayenne 20 23.05 12.55 0.54
4 CXF 30 9.83 4.77 0.48
5 Jackrabbit 16 12.75 4.63 0.36
6 Mahout 24 8.21 4.25 0.52
7 Pig 20 6.10 4.70 0.77

Overall 166 11.17 5.92 0.53
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In this study, the relationship between missing link smell and bug introduction

is examined. To understand the relation, Spearman’s rank correlation is performed

between the number of smelly commits and the number of FIC commits for all

projects individually. The number of smelly commits and number of FIC commits

are calculated for each window. The result of correlation analysis is shown in

Table 4.7 with Spearman’s correlation coefficient (ρ) and corresponding p-value.

Table 4.7: Result of correlation analysis between the number of smelly commits
and FIC commits

# Project rho (ρ) p-value
1 ActiveMQ 0.858 < 0.01
2 Cassandra 0.648 < 0.01
3 Cayenne 0.797 < 0.01
4 CXF 0.944 < 0.01
5 Jackrabbit 0.768 < 0.01
6 Mahout 0.769 < 0.01
7 Pig 0.941 < 0.01

The correlation coefficient is interpreted according to Table 4.2 and considered

to be significant if the p-value is less than 0.01. The result suggests that there is a

significant positive correlation between number of smelly commits and FIC com-

mits. Among seven evaluated projects, CXF, Pig, ActiveMQ, Cayenne, Jackrabbit

and Mahout show a strong positive correlation. A moderate positive correlation

is found in Cassandra.

These results suggest that missing link smell and bugs are correlated in terms

of number of smelly commits and number of FIC commits. It indicates that

commits submitted by smelly developers, that is, smelly commits, are very likely

to introduce bugs in the system. This information can help the reviewing process

in open-source projects. Smelly commits should be reviewed thoroughly to avoid

possible bug introduction.
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4.3.2.4 Bug Severity Analysis Result

Smelly FIC commits are analysed to understand the severity of bugs introduced by

developers who are involved in missing link smell. The following five bug severity

categories are found in Jira for these projects.

1. Blocker - These bugs block development and/or testing work. The produc-

tion can not run.

2. Critical - These bugs cause crashes, loss of data, or severe memory leaks.

3. Major - These bugs result in major loss of function.

4. Minor - These bugs cause minor loss of function or other problems where

an easy workaround is present.

5. Trivial - These bugs are about cosmetic problems, for example, misspelled

words or misaligned text.

All the evaluated projects except Cassandra use the above categorization for

bug severity.

Table 4.8 reports the severity of bugs introduced in smelly FIC commits. For

example, smelly FIC commits introduce 4.4% Blocker bugs, 7.7% Critical bugs,

74.4%Major bugs, 11.4%Minor bugs and 2.2% Trivial bugs in CXF project. Fig-

ure 4.1 shows that most of the bugs produced by smelly commits are major bugs.

Table 4.8: Bug severity of smelly FIC commits

# Project
Blocker
(%)

Critical
(%)

Major
(%)

Minor
(%)

Trivial
(%)

1 ActiveMQ 4.4 7.7 74.4 11.4 2.2
2 Cayenne 0.0 0.6 88.5 10.8 0.0
3 CXF 0.3 4.3 82.1 13.0 0.3
4 Jackrabbit 3.2 5.3 68.4 22.1 1.1
5 Mahout 0.0 1.5 67.0 31.0 0.4
6 Pig 0.7 2.1 90.7 5.0 1.4

Average 1.4 3.6 78.5 15.6 0.9
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On average, 78.5% smelly FIC introduce Major bugs, 15.6% introduce Minor

bugs, 3.6% introduce Critical, 1.4% introduce Blocker bugs and 0.9% introduce

Trivial bugs in the system.
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Figure 4.1: The severity of bugs in smelly FIC commits

These results suggest that developers introduce mostly Major level bugs in

their FIC commits while involved in missing link smell. Major bugs are found

to have longer fixing time in the literature [54]. Hence, extra maintenance effort

and cost may be needed to fix these bugs introduced by the developers who are

involved in missing link smell.

4.4 Threats to Validity

This section presents several potential threats that may affect the validity of this

study.

Threats to External Validity: Threats to external validity deal with the

generalization of the results of the study. Seven open-source projects from Apache

are analysed in this study. The choice of these projects is guided by several factors

such as the availability of source code repository, mailing list archive and bug
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repository. However, projects of different sizes and ages are selected for analysis

to mitigate this threat. The age of the evaluated projects varies from 10 to 15

years and the size of projects ranges between 2,451 to 17,098 in terms of number

of commits.

Threats to Internal Validity: Threats to internal validity deal with the

factors that may threaten the validity of the result but are not accounted for.

An open-source tool, Codeface4Smells [55], is used to detect missing link smell

in this study. The identified smells are directly included in the analysis of this

study without further verification. However, this tool is commonly used to detect

community smell in related studies [4, 5]. Moreover, this tool uses mailing list

as the source of communication data to generate communication network. The

result can be different if other communication channels, for example, Skype, Slack,

etc. are considered. However, according to contribution guidelines of evaluated

projects, mailing list is the primary communication channel in these communities.

Mailing list is used as the communication source in other related studies [3, 56].

4.5 Summary

This study investigates the relationship between developers’ contribution and their

involvement in missing link smell. At first, missing link smells are detected for

all the projects. Next, the smelly developers are identified by extracting miss-

ing link instances. The percentage of smelly developers are calculated for every

project. The contribution of a developer to a project is measured by the num-

ber of commits. Finally, correlation analysis is done between the contribution

and their involvement in smell. This study also explores the relationship between

missing link smells and FIC. Furthermore, it examines the severity of bugs that

are introduced in the system by the developers who are involved in missing link

smell.
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For this purpose, seven diverse and open-source projects from Apache are

analysed. The results suggest that there is a moderate positive correlation between

the number of commits of a developer and the number of involvement in missing

link smells. The developers who contribute more tend to involve in more missing

link smell. Furthermore, there is a significant positive correlation between the

number of smelly commits and FIC commits. The findings reveal that developers

mostly introduce major bugs in the system while involved in missing link smell.

Based on this result, the next chapter investigates the impact of community smells

on maintainability metrics in details.
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Chapter 5

Relationship Between

Community Smell and Software

Maintainability

Community smells can be defined as organizational and social anti-patterns in

a development community. These smells can influence developers’ maintenance

decisions and activities such as bug fixing, source code refactoring, etc. For this

reason, understanding of how and to which extent community smells impact soft-

ware maintainability is important and yet to be analyzed. To identify the impact,

an empirical study is conducted to investigate whether the maintainability differs

between classes affected by community smells and those which are not. To as-

sess maintainability, change-proneness, fault-proneness, code smells and metrics

related to five quality attributes of maintainability such as modularity, modifia-

bility, etc. are considered. Then, the distributions of these metrics are compared

between smelly and non-smelly classes using statistical tools. The result shows

that smelly classes are more change and fault-prone than non-smelly classes as well

as more likely to contain code smells. In terms of quality attributes, the main-

tainability appears to be lower in smelly classes compared to non-smelly classes.
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5.1 Introduction

Community smells are communication and collaboration issues which are com-

mon among developers in a software development community. These, the orga-

nizational and social anti-patterns in the community, may lead to the emergence

of unforeseen project costs, known as social debt [1]. Software maintainability is

defined as the modification capability of a software [7]. It may decrease, as the

developers’ interaction with source code is not only dependent on technical factors

but also on inter-personal issues [4]. To keep the source code of a software more

maintainable, understanding how and to which extent community smells impact

software maintainability is important.

To understand the impact of community smells on software maintainability,

the relationships between community smells and maintainability metrics need to

be established. Community smells occur based on how developers communicate

and collaborate among themselves while developing software. It is to be inves-

tigated whether the maintainability of the source code differs due to developers’

involvement in community smells during the development time. How maintain-

ability metrics differ in the presence and absence of community smells can yield an

understanding of how software maintainability is affected by community smells.

Existing researches have been studying community smells from different per-

spectives such as definition, detection and impact analysis. It has started by defin-

ing community smells from an industrial case study [2]. Later, researchers have

studied how to detect those in open-source projects analysing project repositories

and development mailing lists [3, 9, 11]. These definitions and detection meth-

ods provide the basic understandings of community smells, necessary for further

impact analysis of community smells. In another study, developers’ perceptions

about community smells are investigated where it is considered as harmful for

development [3]. Based on that, by predicting code smell intensity [4] and bug
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[10] from community smells, a few studies established the relationship between

community smells and these technical factors. Although the impact of commu-

nity smells on some individual technical factors have been studied, the impact of

community smells on software maintainability as a whole is yet to be analyzed.

In this study, an empirical research is conducted to identify the impact of com-

munity smells on software maintainability. This study considers four community

smells namely Organizational Silo, Missing Link, Radio Silence, and Black Cloud,

which are mostly used in the literature to represent community smells [4, 6, 57].

The details about these smells are discussed in Chapter 2. To detect these smells,

open-source project repositories are cloned from GitHub and developer mailing

lists are collected from the archive named Gmane [52]. Communication and col-

laboration graphs are built by parsing the change history of the repository and the

mailing list respectively. From these graphs, community smells are identified along

with involved developers (called smelly developers) by looking for communication

and collaboration patterns [3].

On the other hand, to measure software maintainability, this study uses change-

proneness, fault-proneness, code smell and ISO/IEC 25010 defined five quality

attributes namely modularity, reusability, analyzability, modifiability, and testabil-

ity [7, 15, 17, 18]. The change-proneness is calculated as the number of changes

performed in the class. For this purpose, the change history is parsed from the

project repository. The fault-proneness of a class is measured as the number of

fixing-changes. From the project repository and bug repository, fixing-changes are

extracted matching the issue ID written in the commit message with the corre-

sponding issue report. To detect code smells in a class, a prominent and efficient

rule-based approach is used named DECOR [58]. To identify ISO/IEC 25010 de-

fined quality attributes, 14 class level metrics are also calculated by static code

analysis on the project repositories [19].
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317 releases of 14 open-source projects are analysed to investigate the impact

of community smells on software maintainability. The result of the study shows

that software maintainability is affected by community smells in terms of consid-

ered metrics. It is found that the change-proneness and fault-proneness are high

in smelly classes compared to non-smelly classes. The observed differences in the

mean values of change-proneness and fault-proneness are found statistically signifi-

cant from Mann–Whitney U test [59]. Furthermore, classes affected by community

smells are more likely to have code smells than classes not affected by community

smells. As suggested by the odds ratio, smelly classes are 1.7 times more likely

to contain code smells than non-smelly classes. The result of the object-oriented

metrics shows that smelly classes are less maintainable compared to non-smelly

classes. The finding indicates that community smells have an adverse impact on

software maintainability. The details of the study are presented in the following

sections.

5.2 Methodology

In this study the impact of community smells on software maintainability is inves-

tigated. The overview of the proposed methodology is shown in Figure. 5.1. First,

community smells are identified from the project repository and mailing list. After

detecting community smells, the developers involved in any of those community

smells are defined as smelly developers. Next, classes affected by the community

smells, that is, modified by smelly developers, are called smelly classes, otherwise

non-smelly classes [4, 10]. As shown in Figure. 5.1, the next step is measuring

the maintainability of the software system. To measure maintainability, change-

proneness, fault-proneness, code smell, and ISO/IEC 25010 defined five quality

attributes such as modularity, reusability, etc. are used as these are commonly

utilized in previous studies [7, 15, 16, 17, 18, 19]. Finally, statistical analysis is per-
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formed to identify whether maintainability differs between smelly and non-smelly

classes. The details of the research steps are elaborated below.

Start

Project Repository 
(GitHub)

Mailing List 
Archive (Gmane)

Detect Community Smell

Identify Smelly and Non-Smelly Developers

Identify Smelly and Non-Smelly Classes

Calculate Maintainability Metrics for Smelly and Non-Smelly Classes

Perform statistical  analysis to check whether Maintainability differs 
between Smelly and Non-Smelly Classes

End

Figure 5.1: Overview of the methodology

5.2.1 Detecting Community Smells

Detecting community smells is the first step of this study. Community smells are

identified from the source code repository and development mailing list. First,

the collaboration network of the development community is generated from the

change history of the project by connecting developers who work on the same

source code. On the other hand, the communication network is generated mining

the mailing list by connecting developers who reply in the same email. From col-

laboration and communication network, community smells are detected according
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to the identification patterns given by Tamburri et al. [3]. For instance, Lone Wolf

is detected by identifying an edge that is present in the collaboration network but

missing from the communication network. To detect community smells, the state-

of-the-art tool Codeface4Smells [9] is used. This tool is publicly available and

widely used by most of the studies related to community smells [3, 4, 5, 6]. It can

detect four community smells namely Organizational Silo, Lone Wolf, Bottleneck,

and Black Cloud. The validity of the tool has been empirically evaluated through

a qualitative investigation with developers [60]. According to the findings, the

community smells found by this tool are all true positives and no additional smell

instances were mentioned by developers which reduces the risk of having false

negatives. This validation makes the tool reliable and hence used in this study.

The software development community changes from time to time, so, a tem-

poral window must be set to detect community smells. In this study, the release

is chosen because substantial changes are needed to observe the impact of com-

munity smells on maintainability metrics that can be found between two releases.

After detecting community smells, developers in a release are divided into two

categories - smelly developers and non-smelly developers. A developer involved

in any kind of community smell is considered a smelly developer for that release

otherwise non-smelly developer.

The involvement of classes in any kind of community smells is identified to

divide those into two categories, which are smelly and non-smelly class. A class

is said to be affected by community smells, if the class has been modified by

a smelly developer [4, 10]. For example, if a class Ci is modified by a smelly

developer in between two consecutive releases rj−1 and rj, class Ci is considered

smelly otherwise non-smelly. This approach has been followed by existing studies

as well [4, 10].
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5.2.2 Detecting Change-proneness

Change-proneness is one of the important metrics to understand the maintainabil-

ity of a class. The change-proneness of a class can be computed as the ratio of

number of changes in a class to the number of total changes between two releases

[15]. The change in a class can be addition or deletion. So, the number of changes

of a class Ci is calculated using equation (5.1).

#changes(Ci) = added(Ci) + deleted(Ci) (5.1)

In equation (5.1), added(Ci) and deleted(Ci) are the number of added and deleted

lines respectively. The number of added lines (added(Ci)) and deleted lines (deleted(Ci))

of each class between rj−1 and rj are computed using commit history. Finally, the

change-proneness of a class Ci in a release rj is computed using equation (5.2),

change proneness(Ci, rj) =
#changes(Ci)rj−1→rj

#changes(rj−1 → rj)
(5.2)

where #changes(Ci)rj−1→rj
is the number of changes in Ci during the time t

between release rj−1 and rj, and #changes(rj−1 → rj) is the total number of

changes in the whole project during t.

The length of t can bias the change-proneness of a class. For example, the

number of changes in a class is usually higher for longer interval between releases

[15]. Since the time period t between release rj−1 and rj is not equal for all

releases, the change-proneness is normalized in equation (5.2) dividing the number

of changes by the total number of changes in a release.

5.2.3 Detecting Fault-proneness

Fault-proneness is another important metric which is needed to understand the

maintainability of a class. The fault-proneness of a class is calculated as the ratio of
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number of bug-fixing changes in a class and the total number of bug-fixing changes

in between two releases. Where, the bug-fixing changes (addition or deletion

for fixing bug) are identified through bug-fixing commits. To extract bug-fixing

commits that contain Issue ID or Bug ID, commit messages are searched using

regular expression [15]. For example, let consider the following commit message

from ActiveMQ1 project:

“[AMQ-8309] Fix spring import range, change optional to be more

flexible . . . ”

The above commit can be identified with the regular expression “AMQ-\\d+”.

As there are multiple types of issues such as bug, enhancement etc., issues related

to bugs need to be distinguished. For each Issue ID found in commit messages,

the corresponding issue report is extracted from the issue tracker such as Jira [53]

and Bugzilla [61]. Then, bug type issues are separated by checking their types.

However, there may be duplicated or false-positive bugs which can bias the result.

To exclude those bugs, only bugs that have the status Closed or Resolved and the

resolution Fixed are considered [15].

Next, the number of bug-fixing changes of a class Ci is calculated using equation

(5.3).

#bug fixing changes(Ci) = fix added(Ci) + fix deleted(Ci) (5.3)

Here, fix added(Ci) and fix deleted(Ci) are the number of added and deleted

lines respectively for fixing changes. Finally, the fault-proneness of a class Ci in a

release rj is computed using equation (5.4).

fault proneness(Ci, rj) =
#bug fixing changes(Ci)rj−1→rj

#bug fixing changes(rj−1 → rj)
(5.4)

1https://github.com/apache/activemq
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In equation (5.4), #bug fixing changes(Ci)rj−1→rj
is the number of bug-fixing

changes in Ci during the time t between release rj−1 and rj, and #bug fixing

changes(rj−1 → rj) is the total number of bug fixing-changes in the whole project

during t.

Table 5.1: List of considered code smells in this study

Code Smell Reference
AntiSingleton [62]
BaseClassKnowsDerivedClass [58]
BaseClassShouldBeAbstract [58]
Blob [62]
ClassDataShouldBePrivate [62]
ComplexClass [62]
FunctionalDecomposition [62]
LargeClass [24]
LazyClass [24]
LongMethod [24]
LongParameterList [24]
ManyFieldAttributesButNotComplex [58]
MessageChains [24]
RefusedParentBequest [24]
SpaghettiCode [62]
SpeculativeGenerality [24]
SwissArmyKnife [62]
TraditionBreaker [58]

5.2.4 Detecting Code Smells

Code smell denotes the poor implementation choices applied by developers which

is needed to understand the maintainability of a class. To detect code smells

of a class, the rule-based approach is followed named as DECOR [58]. In this

approach, code smells are identified based on a set of rules, called rule cards2.

Among the available code smell detection tools, DECOR [58] is selected as it has

been utilized in earlier studies of code smells efficiently with a good performance

[15, 17, 63]. Table 5.1 provides the list of 18 code smells considered in this study.

2http://www.ptidej.net/research/designsmells/grammar/Blob.txt
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After detecting these smells, classes are categorized into two groups which are

CodeSmell and NoCodeSmell. A class Ci is labelled as CodeSmell in release rj, if it

contains any kind of code smell in that release, otherwise labelled as NoCodesmell.

Table 5.2: List of maintainability metrics

Category Metrics

Complexity

Class Lines of Code (LOC) [64]
Number of Instance Methods (NIM) [64]
Number of Instance Variables (NIV)
Weighted Methods per Class (WMC) [65]

Coupling
Coupling Between Objects (CBO) [65]
Response For a Class (RFC) [65]

Cohesion Lack of Cohesion in Methods (LCOM) [65]

Abstraction
Number of Immediate Base Classes (IFANIN) [64]
Number of Immediate Subclasses (NOC) [65]
Depth of Inheritance Tree (DIT) [65]

Encapsulation
Ratio of Public Methods (RPM) [64]
Ratio of Static Methods (RSM) [64]

Documentation
Comment of Lines per Class (CLOC) [64]
Ratio Comments to Codes per Class (RCC) [64]

5.2.5 Object Oriented Metrics

To examine ISO/IEC 25010 defined five quality attributes of maintainability,

namelymodularity, reusability, analyzability,modifiability, and testability, six groups

of object-oriented metrics are employed [41]. These are complexity, coupling, co-

hesion, abstraction, encapsulation, and documentation. These groups are related

with the above five quality attributes in the following way [19]:

- high complexity of a class indicates low analyzability and modifiability

- high coupling negatively affects analyzability and reusability

- low cohesion reduces modularity and modifiability

- low abstraction decreases reusability

- low encapsulation contributes to less modularity
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- proper documentation implies high analyzability, modifiability and reusabil-

ity

14 class level metrics are selected ensuring at least one metric from each group

[19]. The list of object-oriented metrics of maintainability and their categories

are shown in Table 5.2. A static code analysis tool, Understand (version:5.1,

Build:1029), is used to compute these metrics. The identified metrics will be used

in the next step for statistical analysis.

5.2.6 Statistical Analysis

According to the research steps described above, all required artifacts such as com-

munity smell, smelly and non-smelly classes, change-proneness, fault-proneness

and other maintainability metrics are collected. Then, statistical analysis is per-

formed to analyze the relationship between community smells and maintainability

metrics.

To investigate the impact of community smell on metric m, the following null

hypothesis is formulated.

H01: There is no difference in the distribution of metric values between com-

munity smell affected class and unaffected class.

Mann-Whitney U test is used to examine the difference in the distribution

of values of metric m between smelly and non-smelly classes [59]. This test is a

non-parametric statistical test and does not require a normal distribution. It is

used to assess the null hypothesis stating that a randomly selected observation

from one group is equally likely to be less than or greater than a randomly se-

lected observation from another group. In this study, the test is applied with 1%

significance level, that is, p-value < 0.01 as a widely used level of significance in

software engineering empirical researches [31] As the study investigates 16 metrics,

Bonferroni correction is applied which adjusts p-values by multiplying with the

number of tests (16 tests) to eliminate family-wise error rate [66]. This hypothesis

56



testing reveals whether metric m differs in the presence and absence of community

smells.

As code smells are computed as a categorical variable namely CodeSmell and

NoCodeSmell, a separate hypothesis is formulated to investigate whether classes

affected by community smells exhibit a different likelihood of having code smell

as compared to non-smelly classes.

H02: The proportion of classes having at least one code smell does not differ

between smelly and non-smelly classes.

To attempt rejecting H02, Fisher’s Exact test [67] is used which checks whether

a proportion varies between two groups. To understand the likelihood of the event

to occur, the Odds Ratio (OR) [68] is also computed. The Odds Ratio (OR) is

defined as the ratio of odds p of an event occurring in one group, to the odds q of

the same event occurring in the second group. For example, the odds that smelly

classes having code smell, to the odds non-smelly classes having code smell. An

OR equal to one indicates that the event is equally likely in both groups. An OR

greater than one indicates that the event is more likely in the first group, that

is, smelly group. An OR less than one indicates that the event is more likely

in the second group, that is., non-smelly group. The result of the hypothesis

reveals whether classes affected by community smells are more likely to contain

code smells. The following section presents the experiment and result discussions

of the study.

5.3 Experiment and Result Analysis

To examine the impact of community smell on software maintainability, the ex-

periment is carried out on 317 releases of 14 open-source projects according to

the methodology described in Section 5.2. The description of the dataset and the

results of the experiment on the dataset are described in the following subsections.

57



T
ab

le
5.
3:

L
is
t
of

an
al
y
ze
d
so
ft
w
ar
e
p
ro
je
ct
s

P
ro

je
ct

D
e
sc
ri
p
ti
o
n

S
o
u
rc
e
C
o
d
e

#
A
n
a
ly
se
d

R
e
le
a
se
s

A
n
a
ly
si
s
P
e
ri
o
d

#
A
n
a
ly
se
d

C
o
m
m
it
s

A
ct
iv
eM

Q
J
av
a
M
es
sa
ge

B
ro
ke
r

gi
th
u
b
.c
om

/a
p
ac
h
e/
ac
ti
ve
m
q

24
F
eb
-2
00
7
-
J
an

-2
02
1

90
86

A
n
t

B
u
il
d
S
y
st
em

gi
th
u
b
.c
om

/a
p
ac
h
e/
an

t
33

J
u
l-
20
02

-
M
ay
-2
02
0

11
79
7

C
as
sa
n
d
ra

D
at
ab

as
e
M
an

ag
em

en
t

S
y
st
em

gi
th
u
b
.c
om

/a
p
ac
h
e/
ca
ss
an

d
ra

18
O
ct
-2
01
1
-
J
u
l-
20
20

10
10
2

C
ay
en
n
e

O
R
M

F
ra
m
ew

or
k

gi
th
u
b
.c
om

/a
p
ac
h
e/
ca
ye
n
n
e

17
J
u
l-
20
07

-
J
u
l-
20
20

65
69

C
X
F

W
eb

S
er
v
ic
es

F
ra
m
ew

or
k

gi
th
u
b
.c
om

/a
p
ac
h
e/
cx
f

16
O
ct
-2
01
0
-
A
u
g-
20
20

14
98
8

D
ri
ll

D
is
tr
ib
u
te
d
Q
u
er
y

E
n
gi
n
e

gi
th
u
b
.c
om

/a
p
ac
h
e/
d
ri
ll

24
S
ep
-2
01
3
-
J
u
n
-2
02
1

38
42

E
cl
ip
se
-C

D
T

In
te
gr
at
ed

D
ev
el
op

m
en
t

E
n
v
ir
on

m
en
t

gi
th
u
b
.c
om

/e
cl
ip
se
-c
d
t/
cd
t

38
J
u
n
-2
00
9
-
M
ar
-2
02
1

21
81
8

J
ac
k
ra
b
b
it

J
av
a
C
on

te
n
t

R
ep

os
it
or
y

gi
th
u
b
.c
om

/a
p
ac
h
e/
ja
ck
ra
b
b
it

28
O
ct
-2
00
6
-
J
u
l-
20
20

70
60

J
en
a

S
em

an
ti
c
W
eb

F
ra
m
ew

or
k

gi
th
u
b
.c
om

/a
p
ac
h
e/
je
n
a

30
O
ct
-2
01
2
-
M
ar
-2
02
1

79
11

M
ah

ou
t

D
is
tr
ib
u
te
d
L
in
ea
r

A
lg
eb
ra

F
ra
m
ew

or
k

gi
th
u
b
.c
om

/a
p
ac
h
e/
m
ah

ou
t

12
M
ay
-2
01
0
-
S
ep
-2
02
0

40
26

O
p
en
N
L
P

N
at
u
ra
l
L
an

gu
ag
e

P
ro
ce
ss
or

gi
th
u
b
.c
om

/a
p
ac
h
e/
op

en
n
lp

8
D
ec
-2
01
4
-
J
u
l-
20
20

18
71

P
ig

L
ar
ge

D
at
as
et

A
n
al
y
ze
r

gi
th
u
b
.c
om

/a
p
ac
h
e/
p
ig

15
D
ec
-2
01
0
-
J
u
n
-2
01
7

34
76

P
O
I

A
P
I
to

ac
ce
ss

M
ic
ro
so
ft

O
ffi
ce

fo
rm

at
s

gi
th
u
b
.c
om

/a
p
ac
h
e/
p
oi

19
J
u
n
-2
00
7
-
J
an

-2
02
1

88
20

T
om

ca
t

J
av
a
H
T
T
P
W
eb
S
er
ve
r

gi
th
u
b
.c
om

/a
p
ac
h
e/
to
m
ca
t

35
J
u
n
-2
01
0
-
S
ep
-2
02
0

19
37
0

T
ot
al

31
7

13
07

36

58



5.3.1 Data Description

To find the subject systems for analysis, a list of 94 projects is retrieved from

datasets used in previous empirical studies related to community smells [3, 4].

From this list, this study focuses on projects written in Java programming lan-

guage. This is because Java is a popular object-oriented language and necessary

resources are available to detect code smells. After filtering out non-Java systems,

the number of projects reduces from 94 to 28. Then, 3 projects are excluded as

the issue tracker is not found in Jira or Bugzilla which is necessary for identifying

fault-proneness. From remaining 25 projects, 11 more projects terminated with

error while analysing collaboration and communication by Codeface4Smells. The

reasons of the error are manually checked. For example, a project named Jmeter

has no communication in the provided mailing list in between considered releases.

After excluding these projects, the final dataset consists 14 projects.

The details of the selected projects are provided in Table 5.3 with the project

name, the number of considered releases, analysis period and the number of anal-

ysed commits. For example, 28 releases of ActiveMQ, a java message broker sys-

tem, are considered for analysis which has covered about 14 years of lifetime and

9086 commits.

The descriptive analysis is performed on these projects to get an idea about

the dataset. The source code of selected projects is available in Github and the

development mailing list archives are available in Gmane [52]. The issues of the

selected projects are maintained in either Jira or Bugzilla. The selected projects

have 317 releases and change history of 130,736 commits in total. In terms of

commits, the size of the projects ranges from 3,476 to 21,818 commits. The

selected projects belong to different application domains such as DBMS, IDE,

Web Framework, Data Analyzer, etc. The resulting dataset consists of 955,237

classes from 317 releases of 14 open-source projects. The dataset contains 149,365

smelly classes and 805,872 non-smelly classes.

59



Table 5.4: Result of the overall impact of community smells on software maintain-
ability (n.s. means non-significant p-value)

Category Metrics
Community Smell Adj.

p-valueNonSmelly Smelly
Change-proneness 8.47E-05 1.34E-03 < 0.01
Fault-proneness 7.04E-05 1.39E-03 < 0.01

Complexity

LOC 99.65 174.50 < 0.01
NIM 7.73 11.53 < 0.01
NIV 1.96 2.93 < 0.01
WMC 8.60 13.06 < 0.01

Coupling
CBO 10.06 16.37 < 0.01
RFC 39.33 43.72 < 0.01

Cohesion LCOM 32.29 38.78 < 0.01

Abstraction
IFANIN 1.32 1.34 n.s.
NOC 0.64 0.71 < 0.01
DIT 2.20 2.09 < 0.01

Encapsulation
RPM 0.77 0.75 < 0.01
RSM 0.12 0.14 < 0.01

Documentation
CLOC 38.75 57.03 < 0.01
RCC 0.80 0.58 < 0.01

5.3.2 Results and Discussions

The results of the study are presented in this section. First, the overall impact

of community smells on software maintainability is discussed where there is no

discrimination among the specific kind of community smells. That means a class

is considered smelly if it is affected by any of the four considered community smells.

Table 5.4 shows the summary of the results with the mean value of each metric

for smelly and non-smelly classes.

Then, the individual impact of each community smell on software maintain-

ability is presented. Among four community smells, Black Cloud is found only in

9% releases (27 out of 317) whereas Organisational Silo, Lone Wolf, and Radio

Silence are found in 73%, 76%, and 89% of the considered releases respectively.

This finding is consistent with the previous study [3], where the presence of Black

Cloud instances was less. The reason for the absence of Black Cloud smell in

open-source projects is that open-source communities do not lack structured com-
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Table 5.5: Result of the impact of Organizational Silo on software maintainability
(n.s. means non-significant p-value)

Category Metrics
Organizational Silo Adj.

p-valNonSmelly Smelly
Change-proneness 2.19E-04 1.53E-03 < 0.01
Fault-proneness 2.09E-04 1.65E-03 < 0.01

Complexity

LOC 106.694 206.693 < 0.01
NIM 8.080 13.307 < 0.01
NIV 2.056 3.314 < 0.01
WMC 9.017 14.970 < 0.01

Coupling
CBO 10.677 18.614 < 0.01
RFC 39.635 47.885 < 0.01

Cohesion LCOM 32.969 40.239 < 0.01

Abstraction
IFANIN 1.322 1.364 <0.01
NOC 0.641 0.772 < 0.01
DIT 2.182 2.151 n.s.

Encapsulation
RPM 0.766 0.747 < 0.01
RSM 0.121 0.133 < 0.01

Documentation
CLOC 40.402 66.380 < 0.01
RCC 0.775 0.559 < 0.01

munication so they can avoid information overload [3]. Therefore, Black Cloud is

excluded from the individual impact analysis of community smells on maintain-

ability. Table 5.5, 5.6 and 5.7 demonstrate the impact of individual community

smell on maintainability metrics.

Next, the impact analysis is conducted controlling the size of the class consid-

ering all four community smells. This is done to ensure the results achieved are not

simply due to the reflection of class size. So, both smelly and non-smelly classes

are grouped together with similar sizes. Classes are categorized into three groups

namely large, medium and small, based on Line of Codes (LOC), similar as [15].

Classes having a size lower than the first quartile of the distribution of LOC are

considered as small, classes having a size between the first and the third quartile

are considered medium, and classes having a size larger than the third quartile are

considered large classes. Table 5.8, 5.9 and 5.10 show the result of the size based

analysis. The results are discussed below elaborately with each maintainability

metric.
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Table 5.6: Result of the impact of Lone Wolf on software maintainability (n.s.
means non-significant p-value)

Category Metrics
Lone Wolf Adj.

p-valNonSmelly Smelly
Change-proneness 1.31E-04 1.21E-03 <0.01
Fault-proneness 1.19E-04 1.25E-03 <0.01

Complexity

LOC 101.225 174.427 <0.01
NIM 7.821 11.454 <0.01
NIV 1.989 2.893 <0.01
WMC 8.699 13.007 <0.01

Coupling
CBO 10.177 16.468 <0.01
RFC 39.526 43.092 <0.01

Cohesion LCOM 32.404 38.934 <0.01

Abstraction
IFANIN 1.321 1.341 <0.01
NOC 0.639 0.697 <0.01
DIT 2.194 2.096 <0.01

Encapsulation
RPM 0.767 0.752 <0.01
RSM 0.118 0.146 <0.01

Documentation
CLOC 39.363 55.619 <0.01
RCC 0.798 0.558 <0.01

5.3.2.1 Change-proneness

Table 5.4 shows that the mean change-proneness of smelly classes (1.34E-03)

is about 15 times higher than the mean change-proneness of non-smelly classes

(8.47E-05). The Mann-Whitney U test confirms that the observed difference is

statistically significant, that is, the adjusted p-value is less than 0.01. Moreover,

Table 5.5, 5.6 and 5.7 show that smelly classes are more change-prone than non-

smelly classes when affected by Organisational Silo, Lone Wolf, and Radio Silence

individually. The result is also found consistent for small, medium and large sized

classes as shown in Table 5.8, 5.9 and 5.10 respectively.

The results suggest that classes affected by community smells are more change-

prone than unaffected classes. The knowledge gap created by community smells

can cause the frequent change in a class. As an example, the class Componen-

tHelper of the Ant project is involved in 26 changes on average during the time

period when it is not affected by community smells (18 releases). On the other
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Table 5.7: Result of the impact of Radio Silence on software maintainability (n.s.
means non-significant p-value)

Category Metrics
Radio Silence Adj.

p-valNonSmelly Smelly
Change-proneness 1.84E-04 1.36E-03 < 0.01
Fault-proneness 1.71E-04 1.46E-03 < 0.01

Complexity

LOC 105.311 179.030 < 0.01
NIM 8.017 11.760 < 0.01
NIV 2.037 2.979 < 0.01
WMC 8.929 13.396 < 0.01

Coupling
CBO 10.554 16.569 < 0.01
RFC 39.723 43.331 < 0.01

Cohesion LCOM 32.781 39.209 < 0.01

Abstraction
IFANIN 1.323 1.337 n.s.
NOC 0.641 0.713 < 0.01
DIT 2.191 2.056 <0.01

Encapsulation
RPM 0.766 0.754 < 0.01
RSM 0.119 0.149 < 0.01

Documentation
CLOC 40.021 59.441 < 0.01
RCC 0.779 0.600 < 0.01

hand, the average number of changes increased to 178 during the time period when

it is affected by community smells (11 releases). Thus, community smells show

a negative impact on software maintainability, as change-prone classes are more

difficult to maintain [20].

5.3.2.2 Fault-proneness

From Table 5.4, it is observed that smelly classes have higher fault-proneness

than non-smelly classes. The mean fault-proneness of smelly classes (1.39E-03) is

about 19 times higher than non-smelly classes (7.04E-05). The observed difference

is statistically significant. Table 5.5, 5.6 and 5.7 illustrate that when affected by

individual community smell, smelly classes are also more fault-prone compared to

non-smelly classes. As presented in Table 5.8, 5.9 and 5.10, the similar results are

found for small, medium and large sized classes.

The result implies that smelly classes are more prone to faults than non-smelly

classes. Being more fault-prone, smelly classes affect software maintainability
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Table 5.8: Result of the impact of community smells on software maintainability
in small classes (n.s. means non-significant p-value)

Category
Metrics

Small Classes Adj.
p-valNonSmelly Smelly

Change-proneness 2.30E-05 4.11E-04 < 0.01
Fault-proneness 1.62E-05 3.77E-04 < 0.01

Complexity

LOC 11.496 12.026 < 0.01
NIM 1.857 1.814 < 0.01
NIV 0.353 0.400 < 0.01
WMC 2.034 2.017 n.s.

Coupling
CBO 3.197 3.595 < 0.01
RFC 34.279 33.252 < 0.01

Cohesion LCOM 8.685 7.680 < 0.01

Abstraction
IFANIN 1.186 1.189 n.s.
NOC 0.537 0.437 n.s
DIT 2.428 2.320 <0.01

Encapsulation
RPM 0.744 0.742 < 0.01
RSM 0.086 0.107 < 0.01

Documentation
CLOC 14.464 14.132 n.s.
RCC 1.649 1.628 < 0.01

negatively. This is because a fault-prone class needs frequent bug-fixing which

makes it difficult to maintain [21].

5.3.2.3 Code Smells

Table 5.11 reports the number of classes that are (1) smelly and have at least one

code smell, (2) smelly and have no code smell, (3) non-smelly and have at least

one code smell, and (4) non-smelly and have no code smell. The table also reports

the OR value and the result of Fisher’s Exact test. The value of OR implies that

smelly classes are 1.7 times more likely to contain code smells than non-smelly

classes when all community smells are considered together. The OR is found 1.8,

1.69 and 1.64 respectively when Organisational Silo, Lone Wolf, and Black Cloud

are considered individually. As shown in Table 5.11, the result of Fisher’s Exact

test shows that the proportion of classes with code smells significantly different

(p-value < 0.01) between smelly and non-smelly classes.

Table 5.12 shows that the OR values are 1.28 and 1.32 for medium and large
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Table 5.9: Result of the impact of community smells on software maintainability
in medium classes (n.s. means non-significant p-value)

Category
Metrics

Medium Classes Adj.
p-valNonSmelly Smelly

Change-proneness 5.12E-05 7.97E-04 <0.01
Fault-proneness 4.24E-05 7.70E-04 <0.01

Complexity

LOC 53.706 58.187 <0.01
NIM 5.845 5.807 <0.01
NIV 1.577 1.632 n.s.
WMC 6.459 6.526 n.s.

Coupling
CBO 8.716 10.513 <0.01
RFC 37.222 36.717 <0.01

Cohesion LCOM 33.106 32.452 <0.01

Abstraction
IFANIN 1.314 1.281 <0.01
NOC 0.594 0.577 <0.01
DIT 2.170 2.110 <0.01

Encapsulation
RPM 0.805 0.791 <0.01
RSM 0.119 0.139 <0.01

Documentation
CLOC 26.625 25.127 <0.01
RCC 0.561 0.483 <0.01

classes respectively. This indicates that medium and large classes are more likely

to have code smells when those are affected by community smells. As suggested

by odds ratio (OR=0.88), small classes are not likely to contain more code smells

due to community smells.

The results suggest that developers should be careful of classes affected by

community smells as those are more likely to have code smells. Therefore, smelly

classes may need extra maintenance effort as they need refactoring [69]. Thus,

community smells impact the software maintainability negatively.

5.3.2.4 Object Oriented Metrics

To better understand the impact of community smells on object oriented met-

rics of maintainability, the results are discussed below from the perspective of six

categories: complexity, coupling, cohesion, abstraction, encapsulation, and docu-

mentation.
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Table 5.10: Result of the impact of community smells on software maintainability
in large classes (n.s. means non-significant p-value)

Category
Metrics

Large Classes Adj.
p-valNonSmelly Smelly

Change-proneness 2.34E-04 2.34E-03 < 0.01
Fault-proneness 1.98E-04 2.51E-03 < 0.01

Complexity

LOC 308.661 377.353 < 0.01
NIM 18.981 22.162 < 0.01
NIV 4.750 5.467 < 0.01
WMC 21.244 25.180 < 0.01

Coupling
CBO 21.265 28.302 < 0.01
RFC 50.132 56.177 < 0.01

Cohesion LCOM 58.483 58.165 < 0.01

Abstraction
IFANIN 1.501 1.459 <0.01
NOC 0.849 0.962 < 0.01
DIT 1.987 1.971 n.s.

Encapsulation
RPM 0.710 0.710 n.s.
RSM 0.151 0.166 < 0.01

Documentation
CLOC 95.149 112.038 < 0.01
RCC 0.330 0.306 < 0.01

Complexity: The complexity of a class is measured by four metrics in this

study which are LOC, NIM, NIV and WMC. The mean values of these metrics are

reported in Table 5.4 for both smelly and non-smelly classes. All the metrics for

complexity show that the mean values are higher in smelly classes than non-smelly

classes. For instance, the mean value of WMC metric is 13.06 in smelly classes

and 8.60 in non-smelly classes respectively. The mean values of all complexity

metrics imply that smelly classes are more complex than non-smelly classes. The

results of Mann-Whitney U test tell those differences are statistically significant.

From Table 5.4, the values of complexity metrics are 56% higher in smelly classes

with respect to non-smelly classes.

Table 5.5, 5.6 and 5.7 show that the results are consistent for each three in-

dividual community smells. As presented in Table 5.10, only for large classes the

mean values of all complexity metrics are higher in smelly classes. These results

suggest that community smells have an impact on the complexity of classes when

they become large. For small (Table 5.8) and medium (Table 5.9) classes, it is
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Table 5.11: Result of community smell and code smell analysis

CodeSmell NoCodeSmell OR p-val

Overall
Smelly 79110 70255

1.70 <0.01
NonSmelly 320589 485283

Org.
Silo

Smelly 24809 19665
1.80 <0.01

NonSmelly 374890 535873
Lone
Wolf

Smelly 70055 62069
1.69 <0.01

NonSmelly 329644 493469
Radio
Silence

Smelly 41572 36680
1.64 <0.01

NonSmelly 358127 518858

Table 5.12: Result of community smell and code smell in different sized classes

Size CodeSmell NoCodeSmell OR p-val

Small
Smelly 3688 17868

0.88 <0.01
NonSmelly 40607 174064

Medium
Smelly 27351 42908

1.28 <0.01
NonSmelly 136677 273777

Large
Smelly 48071 9479

1.32 <0.01
NonSmelly 143305 37442

easier to understand the source code and maintain the complexity regardless of

the effect of community smells. As the class size grows large, it becomes difficult

to reduce the complexity without adequate knowledge about the class which is

hindered by community smells. The high complexity of such classes indicates less

modifiability and analyzability and thus affect software maintainability negatively.

Coupling: To measure the coupling of classes, two metrics are used such as

CBO and RFC. Table 5.4 shows that the mean values of CBO are 16.37 and 10.06

in smelly and non-smelly classes respectively. On the other hand, the mean values

of RFC metric are 43.72 and 39.33 respectively for smelly and non-smelly classes.

Both metrics indicate high coupling in smelly classes with respect to non-smelly

classes. The observed differences are statistically significant for both metrics. On

average, the values of coupling metrics are 37% higher in smelly classes than non-

smelly classes.

Table 5.5, 5.6 and 5.7 show the similar results for all three individual commu-

nity smells. When classes are grouped according to their size, the mean values of
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CBO are found significantly higher in smelly classes for small (Table 5.8), medium

(Table 5.9) and large (Table 5.10) classes. But the mean value of RFC is found

significantly higher in smelly classes only for large classes. It indicates that RFC

is not affected by community smells in small and medium sized classes. As be-

ing more coupled than non-smelly classes, smelly classes affect maintainability

negatively by decreasing modularity and analyzability.

Cohesion: Cohesion is measured by LCOM metric in both smelly and non-

smelly classes. The mean value of LCOM in smelly classes is 38.78, whereas the

mean value of LCOM is 32.29 in non-smelly classes as reported in Table 5.4. It

means that smelly classes are less cohesive with respect to non-smelly classes. The

result of Mann-Whitney U test confirms that the observed difference is statistically

significant (p-value < 0.01).

As shown in Table 5.5, 5.6 and 5.7, the results are similar for Organisational

Silo, Lone Wolf, and Radio Silence community smell. The smelly classes are

found more cohesive than non-smelly classes when analysed by grouping similar

sized classes together as demonstrated in Table 5.8, 5.9 and 5.10. It indicates that

the previous effect on LCOM is due to the size of the class. The reason behind

this can be smelly developers prefer using methods from classes where they work

rather than using other classes developed by other developers.

Abstraction: The abstraction property of classes is measured by three metrics

such as IFANIN, DIT and NOC. As reported in Table 5.4, the mean values of DIT

in smelly and non-smelly classes are 2.09 and 2.20 respectively. The difference

is statistically significant (p-value < 0.01). When individual community smell is

analysed, the similar results are found as shown in Table 5.5, 5.6 and 5.7. The

results are also consistent over medium and large classes. The mean values of

IFANIN are also less in smelly classes for medium (Table 5.9) and large (Table

5.10) classes. As inherited classes usually implement inherited methods, the size

of classes increases. It can be the reason for not having effect of community smells
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on DIT and IFANIN in small classes. Another metric NOC, which measures the

number of immediate sub-classes, found significantly higher in smelly classes as

reported in Table 5.4. From the above results, it is not evident that abstraction

metrics are affected by community smells.

Encapsulation: The encapsulation property is measured by two metrics

namely RPM and RSM. The mean values of RSM are 0.14 and 0.12 in smelly

and non-smelly classes respectively. The difference is significant from the result

of Mann-Whitney U test. The similar results are found in Table 5.5, 5.6 and 5.7

when community smells are considered individually. Furthermore, as shown in

Table 5.8, 5.9 and 5.10, the results are consistent when classes are grouped into

large, medium and small classes.

In case of another metric RPM, the mean values are high in both classes. That

means encapsulation is violated in these classes irrespective of community smells.

This can happen due to lack of communication among developers. They are not

sure about which methods will be used by other classes and which will not. So,

they keep those methods public thinking that others may need this functionality.

On the other hand, smelly classes have more static methods than non-smelly

classes which affect encapsulation property negatively.

Documentation: To measure the documentation of classes, two metrics are

used which are Comment Lines of Code (CLOC) and Ratio Code to Comment

(RCC). As shown in Table 5.4, the mean value of CLOC is 57.03 in smelly classes

and 38.75 in non-smelly classes. As total lines of comment can vary with class size,

comment ratio can better describe the documentation property. From Table 5.4,

it can be seen that the mean values of RCC are 0.58 and 0.80 in smelly and non-

smelly classes respectively. It is about 28% less documentation in smelly classes

compared to non-smelly classes. The observed difference in RCC is also found

statistically significant (p-value < 0.01).

Table 5.5, 5.6 and 5.7 show the results are similar for each three individual
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community smells. When controlled for the class size, the mean values of RCC

are always less in smelly classes compared to non-smelly for small (Table 5.8),

medium (Table 5.9) and large (Table 5.10) sized classes. The result indicates that

classes affected by community smells are less documented than non-smelly classes.

It reduces the analyzability, modifiability and reusability of classes and thus affects

software maintainability.

From the above discussions, it is observed that classes affected by community

smells are more prone to change and fault. Moreover, smelly classes have a higher

likelihood of having code smells. Furthermore, complexity, coupling, abstraction,

encapsulation, and documentation of classes are found to be affected by community

smells. All of these properties reflect that community smells have an impact

on software maintainability. The findings indicate that smelly classes are less

maintainable than non-smelly classes. The findings of this study will be useful

for keeping a software more maintainable. The practitioners can focus on the

developers who are involved in community smells and software artifacts that are

affected by smells. With this information, they can better manage their resources

for maintenance activities. It will be helpful to make decisions for mitigating

community-related problems in the development environment.

5.4 Threats to Validity

This section discusses potential aspects that may threaten the validity of the study:

Threats to External Validity: In this study, 317 releases of 14 open-source

projects are analysed to understand the impact of community smells on maintain-

ability. The choice of these projects is guided by several factors such as Java pro-

gramming language, the availability of source code repository, mailing list archive

and issue tracker in public. The analyzed projects have different codebase sizes

(ranges from 3,476 to 21,818 commits), different ages (ranges from 9 years to 18
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years), and belonging to different application domains (DBMS, IDE, Web Frame-

work, etc.). Despite the above diversity, the generalization can be threatened

as this study only focuses to Java projects. However, further studies are desir-

able replicating the study on other programming languages. Moreover, this study

focuses on open-source projects and the results can be different while analysing

industrial projects.

Threats to Internal Validity: To detect community smell, an open-source

tool, Codeface4Smells [45], is used. The identified smells are directly included in

the analysis of this study without further verification. However, this tool is com-

monly used to detect community smell in related studies [4, 5, 6, 32]. This tool uses

developer mailing list archives as the communication source and does not consider

other communication channels, for example, Skype, Slack, etc. However, mailing

list is the primary communication channel in the analysed communities according

to contribution guidelines of evaluated projects. Mailing list is used commonly

as the communication source in related studies as well [56, 70]. This study uses

maintainability metrics such as change-proneness, fault-proneness, code smells,

complexity, coupling, cohesion metrics etc., which are commonly used to assess

software maintainability in previous studies [4, 17, 18, 19]. However, changing the

metrics may impact the observed results.

5.5 Summary

This study conducts an empirical investigation to examine how community smells

relate to software maintainability. First, community smells are detected along

with involved developers by analysing communication and collaboration patterns

[3]. The classes of a project are categorized based on the fact that whether those

are modified by these developers. Thus, a class is defined as a smelly class if

it is modified by a smelly developer otherwise non-smelly. Next, to assess the
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maintainability of the software system, metrics such as change-proneness, fault-

proneness, code smell, are considered [15, 16, 17, 18, 19]. Along with these metrics,

ISO/IEC 25010 defined five quality attributes such as modularity, analyzability,

etc. are identified with 14 object oriented-metrics. To investigate the impact of

community smell on each metric, smelly and non-smelly classes are compared to

find the difference. The likelihood of having code smells is also compared between

smelly and non-smelly classes.

The results suggest that classes affected by community smell exhibit more

change-proneness with respect to non-smelly classes. The study also finds that

classes affected by community smells are more fault-prone than classes not affected

by community smells. Smelly classes are more likely to have code smells than

other classes. In terms of object-oriented metrics, classes affected by community

smells are found less maintainable than non-smelly classes. These results indicate

that community smells have a negative impact on software maintainability. Thus,

classes affected by community smells are less maintainable than non-smelly classes.

The next chapter contains the concluding remarks of the whole thesis and possible

future directions.
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Chapter 6

Conclusion

Community smells represent poor social and organizational phenomena in the de-

velopment community that can lead to the emergence of social debt. Community

related aspects can influence the software development maintenance decisions such

as code refactoring, bug fixing etc. [4]. The current thesis investigates how and

to which extent community smells impact software maintainability. First, the in-

volvement of developers in community smell such as missing link, is analysed to

understand whether their involvement have impact on maintainability in the form

of developers’ contribution and bug introduction. Next, the impact of commu-

nity smells on software maintainability as a whole is investigated by comparing

classes affected by community smells and those that are not. The comparison is

made in terms of different maintainability metrics such as change-proneness, fault-

proneness, code smell, complexity, coupling, etc. In this chapter, the summary of

the whole thesis is presented focusing the contributions and achievements. Finally,

the possible future directions are discussed to conclude the thesis.
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6.1 Involvement of Developers in Missing Link

Community Smell

At first, this research investigates the relationship between developers’ contribu-

tion and their involvement in missing link smell. Missing link smell occurs when

developers collaborate in the source code without communicating. These smells

are detected by analysing source code repositories and development mailing lists.

By extracting missing link instances, developers involved in those smells are identi-

fied. Developers are divided into two categories based on their involvement, such

as smelly and non-smelly. Next, the percentage of smelly developers are calcu-

lated for every project. The number of involvements in missing link are calculated

for each smelly developer. The contribution of those developers to a project is

measured by the number of commits. The number of total commits is counted

analysing change history. Finally, correlation analysis is done between the contri-

bution and their involvement in smell. This study also explores the relationship

between missing link smells and bug introduction. To identify bug introduction,

the number of Fix-Inducing Changes (FIC) are calculated by analysing source

code and change histories. Furthermore, it examines the severity of bugs that are

introduced in the system by the developers who are involved in missing link smell.

For this purpose, seven diverse and open-source projects from Apache are anal-

ysed. The results suggest that there is a moderate positive correlation between the

number of commits of a developer and the number of involvements in missing link

smell. The developers who contribute more tend to involve in more missing link

smells. Furthermore, it is evident that there is a significant positive correlation

between the number of smelly commits and FIC commits. The results reveal that

developers mostly introduce major bugs in the system while involved in missing

link smell. The above results indicate that the contributions of developers are

affected due to their involvement in community smell. Bugs introduced in the sys-
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tem by smelly developers can cause the major loss of functionality which denotes

the negative impact on software maintainability.

6.2 How Community Smells and Software Main-

tainability Metrics Are Related

Based on the finding that community smells such as missing link can affect soft-

ware maintainability in the form of developers’ contribution and bug introduction,

the overall impact on software maintainability is investigated in terms of different

maintainability metrics. First, community smells are detected analysing commu-

nication and collaboration patterns from project repository and mailing list [3].

The developers involved in these smells are defined as smelly developers other-

wise non-smelly developers. The classes of a project are categorized based on

the fact whether those are modified by smelly developers. Thus, a class is de-

fined as a smelly class if it is modified by a smelly developer otherwise non-smelly

class. Next, to assess the maintainability of the software system, metrics which are

commonly used in previous studies [15, 16, 17, 18, 19], such as change-proneness,

fault-proneness, code smell, are considered. Along with these metrics, ISO/IEC

25010 defined five quality attributes such as modularity, analyzability, etc. are

identified with 14 object oriented-metrics. To compute these above metrics, the

source code, commit history and issue history are analyzed.

After gathering all required artifacts, the experiment is carried out on a dataset

which contains 317 releases from 14 open-source projects. To investigate the im-

pact of community smell on each metric, smelly and non-smelly classes are com-

pared using Mann-Whitney U test. The likelihood of having code smells is also

compared between smelly and non-smelly classes using odds ratio, and the statis-

tical significance is measured using Fisher’s Exact test.

The results suggest that classes affected by community smell exhibit more
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change-proneness with respect to non-smelly classes. The study also finds that

classes affected by community smells are more fault-prone than classes not af-

fected by community smells. Smelly classes are more likely to have code smells

than other classes. In terms of object-oriented metrics, classes affected by com-

munity smells are found less maintainable than non-smelly classes. These results

indicate that community smells have a negative impact on software maintain-

ability. Thus, classes affected by community smells are less maintainable than

other classes. Therefore, community-related aspects should also be considered in

software maintenance activities.

6.3 Future Work

In this thesis, the relationship between community smells and software maintain-

ability metrics has been established by conducting an empirical study using open-

source projects. This research can be further extended in the following directions:

1. Analysing industrial projects: This research focused on open-sourced

projects for the availability of the artifacts needed for analysis. The nature

of communication and collaboration in closed-source or industrial projects

are different from open-source projects. Being informed by the findings of

the research, future studies can incorporate industrial projects to explore

the impact of community smell on maintainability in those projects.

2. Analysing non-object-oriented projects: In this research, only object-

oriented projects which use Java as the primary programming language are

focused to identify the impact of community smells on maintainability. Fur-

ther studies can replicate the study using other programming languages and

non-object-oriented projects.
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3. Utilizing communication information other than mailing list: In

this research, communication information is collected from developer mail-

ing lists. In recent times, many software projects use Github as project

management system where all communications are happened [71]. Being

informed by the research findings, communication data from Github can be

used in detecting community smells to identify the impact on those projects.
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