
eBAT: An Efficient Automated Web Application
Testing Approach Based on Tester’s Behavior

Mridha Md. Nafis Fuad
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0920@iit.du.ac.bd

Kazi Sakib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh
sakib@iit.du.ac.bd

Abstract—Web application failure detection relies mostly on
the tester’s creativity, leaving test automation to only ease
executing repetitive tasks. Existing automated testing techniques
opt for test path diversity or input generation but not the tester’s
behavioral patterns. For example, testing deeply nested business
logic, proper form submission, or non-redundant navigation are
not considered. This paper proposes eBAT, an automated testing
approach that considers those testers’ interaction patterns from
observation. A behavior-driven action selection strategy is derived
from these patterns to interact with the system. Actionable
elements (buttons, links, inputs, etc.) obtained through state
abstraction and interaction pattern-wise grouping are operated
in a tree-based manner. The effectiveness and efficiency of eBAT
are evaluated as the unique number of failures detected and the
detection rate respectively. Results compared against the state-of-
the-art indicate significant improvement in failure detection with
similar code coverage. Moreover, eBAT outperforms the baseline
failure detection rate in 5 out of 6 benchmark projects.

Index Terms—web testing, behavior, tester’s behavior, auto-
mated testing, redundancy reduction

I. INTRODUCTION

In manual web application testing, a tester always tries to
test a complete functionality at a time. They design test cases
in such a way that fulfills each of the unique functionality.
Their goal is to detect bugs with minimum redundant action
execution [1] (such as clicking the same link multiple times
is redundant). These common practices can be defined as the
tester’s behavior. Automated web testing approaches [2], [3]
focus mostly on testing metrics like code, branch coverage or
path diversity, etc., which may fail to explore the complete
functionality (e.g., filling the inputs without submitting the
form). As a result, these approaches may lead to partial but
ineffective functional execution sequences.

An automated testing approach based on the tester’s behav-
ior can efficiently test a complete functional action sequence,
combining the benefits of both manual and automated testing.
However, determining such human-level behavioral patterns
is challenging as manual testing practices may vary based on
the tester or organization. A generic set of behavior needs to
be designed such that it is applicable to any web application.
These patterns might be obtained from examining manually

Fellowship from ICT Division, Government of Bangladesh – No.:
56.00.0000.052.33.002.22-42, date: 12.06.2022.

written automation test scripts. Test scripts from the open-
source community can be selected as a baseline to remove any
developer or organization-specific practices. The resulting set
of behaviors incorporated into an automated testing approach
may make the failure detection process efficient.

Automated testing is broadly categorized into model-based
and model-free approaches. Model-based techniques [3]–[6]
are one of the most popular types but limited to generating
test cases using a static navigation model. These test cases
often require human domain knowledge for inputs or domain-
specific description [4], [7]. Model-free approaches that select
actions in a pseudo-random manner [8] are termed as random-
based. They consider the dynamic nature of the Application
Under Test (AUT) but generate redundant and invalid test
cases. Zheng et al. [9] proposed a model-free reinforcement
learning based fully automated approach to explore diverse
application scenarios. However, the action selection policy
accounts for much redundancy and randomness, which affects
the test suite efficiency. Despite recent advancements, no au-
tomated testing approach incorporates the tester’s exploration
strategies for efficiency in failure detection.

This paper proposes an efficient Behavior based Automated
Testing approach (eBAT), incorporating strategies employed
in manual testing such as non-redundant exploration and
effective action interaction (e.g., non cyclic navigation, form
submission, etc.). The behavioral patterns considered in this
approach do not represent the entire set of tester’s interaction
patterns, rather a subset observed in manually written test
cases. These test cases were extracted from popular open-
source projects which represent the most popular frontend web
frameworks. These patterns were used to devise an action
selection strategy, focusing on - i) non-redundant actions in
Execution Trace (ET) and ii) interdependent action grouping.
Each test case starts from the root page of AUT and selects
actionable elements (buttons, links, etc.) based on the strategy.
State abstraction mechanism is applied to group functionally
similar application behaviors and extract the set of operable
actions. The actions that testers execute together to accom-
plish a business logic are grouped (for example, inputs and
submit button inside web form). Redundant actions that are
encountered previously in the current trace are avoided. The
execution of the resulting actions in each state generates a



Fig. 1: Overview of proposed behavior-based automated testing approach

navigation model (state flow graph). Test cases are generated
by executing a partially explored action sequence until all
actions are completely explored using tree-based traversal [2].

Evaluation is done using a time budget of 30 minutes on
six open-source benchmark web applications taken from prior
work [3], [9]. In terms of effectiveness and efficiency of failure
detection, eBAT outperforms the current state-of-the-art, We-
bExplor [9]. Their results were statistically compared using
Mann–Whitney U test. An early rise in failure detection rate
in eBAT indicates the impact of non-redundant exploration and
behavioral action interaction. The average number of failures
detected in WebExplor and eBAT are 8.1 and 17.8 respectively
with similar code coverage. Moreover, eBAT detected the same
number of failures within only 5 minutes of execution against
30 minutes for WebExplor in 5 out of 6 subjects.

II. RELATED WORK

Automated web application testing gained much research
attention due to the challenges imposed by the dynamic nature
of web applications [10], [11]. Approaches in literature can be
broadly classified into model-based and model-free techniques.

Model-based approaches are the most common type in
literature as test cases can be generated without executing the
application. They rely on a static navigation model, requiring
external assistance or the tester’s domain knowledge. Such
examples are domain-specific language in the approach ATA
[7], user session behavior to generate statistical navigation
model in [12], manually crafted inputs for diverse paths and
navigation model in DIG [3] and SUBWEB [4] respectively.
However, static models cannot capture the full essence of AUT
as they fail to detect the dynamic changes from any event [9].
Pages that are not included in the navigation model are never
explored and thus not tested by these approaches.

This limitation of model-based approaches is addressed in
model-free approaches where the AUT is crawled to generate
test cases on-the-fly. This enables interaction with actions
resulting from dynamic changes. Fard et al. proposed FeedEx
[2] where the exploration prioritizes actions that maximize
the effect on functionality coverage, navigation coverage, page
structure coverage, and test suite size. However, FeedEx only
generates a dynamic abstract test model rather than actual
test cases. On the other hand, random-based action selection
strategy [8] generates test cases from a random or pseudo-
random interaction with AUT. They generate a large number

of redundant test cases along with invalid action sequences,
suffering from infeasibility problems [4].

TESTAR [13] is a scriptless model-free testing approach
that can utilize random, Q-learning, or evolutionary comput-
ing based action selection strategies. Redundant actions are
avoided only if they are present in their immediate parent
state without considering cyclic navigation. Moreover, manual
intervention is needed to blacklist undesirable actions and
predefined grouped actions for the action selection rule.

Zheng et al. [9] proposed WebExplor, an RL-based model-
free automated web testing approach evaluated to be the
current state-of-the-art. However, redundant test cases are gen-
erated as the action selection policy adds noise sampled from
Gumbell distribution, accounting for exploring new actions
generated dynamically. This makes the process inefficient even
with high-level DFA guidance to explore less visited features.

The broad two categories have their own set of advantages
and disadvantages. Model-based approaches can incorporate
the tester’s behavior via manual intervention, i.e., laborious.
On the other hand, model-free approaches are significantly
automated but suffer from redundancy and the inability to test
the complete functionality. Combining the benefits from both
categories, i.e, incorporating the testers’ behavior in a model-
free approach may improve the testing efficiency.

III. METHODOLOGY

This paper proposes eBAT, incorporating the tester’s behav-
ioral patterns in model-free testing. By doing so, it minimizes
execution having no impact on failure detection. The entire
approach is divided into four components, namely - State
Abstraction, Behavioral Grouping, Redundancy Reduction,
and Exploration Completeness, as indicated in Fig. 1.

State Abstraction. The underlying representation (such
as HTML page, screenshot, etc.) of a web application at a
particular time is its state. To achieve the required function-
ality, states contain a set of operable elements such as links,
buttons, input fields, dropdowns, etc. The interaction with such
elements is called actions in web testing. These interactions
may lead to a change in the URL or functionality of the current
DOM. An exponentially increasing number of states affects
the efficiency of test suite generation [14]. This problem is
solved by employing state abstraction to detect the functionally
similar states, reducing redundant testing of the same behavior.



Fig. 2: Petclinic sample project (ineffective execution scenario
owner-detail -> add-owner illustrated by actions 1-6)

Motivation for the abstracted state calculation process has
been taken from [9]. On each ET, the approach starts by
loading the home page of AUT (URL provided as a parame-
ter) and extracts the HTML representation. The sequence of
HTML tag names along with corresponding nested attributes
is listed recursively. Digits within the attributes are removed
for consistency as many modern front-end frameworks dynam-
ically generate attribute IDs on each page load. The Gestalt
pattern matching algorithm is used to calculate the similarity
of the listed sequence after each change in the application
representation. However, to differentiate the abstracted states a
threshold of 0.8 is used based on prior work [9]. The resulting
state is considered unique if - i) the difference between the two
states is greater than the predefined threshold, or ii) the URLs
of the two states are different. The operable HTML tags such
as ⟨button⟩, ⟨a⟩, ⟨input⟩, etc. are parsed and mapped as the
state actions. Only the visible actions are filtered using the
area bounded by the element’s box model.

Behavior Identification. A set of most commonly em-
ployed testers’ behavior is needed for an efficient action
section strategy. Since no prior work lists such behaviors,
manually written front-end automation test suites are analyzed
to identify them. The open source community is preferred
for baseline project selection due to public availability and to
avoid organization or developer specific behaviors. Firstly, the
top six popular frontend frameworks are selected from prior
work [3] (based on stars). Secondly, similar to [15], for each
framework a popular GitHub repository that contains a list
of projects is selected. The projects within these repositories
are included for analysis if - i) GitHub star count ≥ 50, and
ii) automation test scripts mocking the tester’s interactions
are available (selected resources are made available [16]).
Finally, test scripts from the resulting 51 projects are analyzed
manually to determine the behaviors that occur in every
scenario. The subset of the tester’s behaviors identified are - i)
executing non-redundant actions in a particular trace with non-
cyclic navigation, ii) proper form submission, and iii) form
submission with complete or partial input. These behaviors
are incorporated in eBAT to devise the exploration strategy.

The Petclinic open source project, as shown in Fig. 2, is used
to demonstrate the impact of the identified behaviors during
testing. Petclinic contains most of the failures in functionalities
accessible only from the deeply nested owner-detail page [9].

Suppose a tester reaches this page and instead of focusing on
its functionalities, follows the action sequence as shown in
Fig. 2. This would result in a redundant ineffective execution.
Employing the identified behaviors in this scenario would - i)
prevent cyclic navigation (Actions 1-2) since navbar actions
are present on all pages, ii) prevent ineffective form interaction
(Actions 3-6), and iii) test form submissions with missing data
(e.g., exploiting forms in add-visit page)

Behavioral Grouping. The process of grouping actions that
act interdependently is termed behavioral grouping in eBAT.
Actions are grouped in eBAT that collaborate in a specific
sequence to achieve a business objective. Testing these func-
tionalities, requiring selection of such interdependent actions
would otherwise rely on “luck”. Web forms are considered as
they most naturally encapsulate interdependent nested actions
(input, dropdown, radio button, submit button, etc. [17]) to
complete the intended functionality. The form encapsulated
inputs and buttons are combined to always interact together
as a compound action during on-the-fly testing. This grouping
is done by determining the actions residing within a ⟨form⟩
element in the current state. These composite actions are
added to the set of valid actions in the state, making actions
inside the form no longer defined or executed individually.
The detected submit button (using type=“submit” attribute)
is always executed at the end of different possible input
action interactions in the case of composite form actions. This
pattern of interaction ensures proper form submissions and
avoids unnecessary interaction with input actions separately.
The behavioral grouping of table rows and list items is not
considered as the diversity in the content may exploit different
failures, e.g., the owner-detail page with and without pets need
to be tested in Petclinic open-source project.

Redundancy Reduction. Employing state abstraction and
action grouping algorithms is not sufficient for efficiency
as the actions are often duplicated [10]. Tracking redundant
actions within a single trace enables the exploration of the
system through diverse paths. For instance, the actions in the
layout components (navbar, sidebar, and footer) are present
in multiple states. Such actions, although usually unchanged
in their functionality, are marked as valid actions in each
state. The comparison of actions is done based on the action’s
tag and attribute representation used to calculate the state
similarity. An action is called redundant if it is encountered
previously in the trace [1]. Actions discovered in the current
ET are tracked to detect duplicates. On encountering a new
state in a particular trace, redundant actions are filtered (as
depicted in Fig. 1). The resulting set of actions within the
new state is considered for interaction in that particular trace.

Exploration Completeness. Web applications rely on a
State-Flow Graph based navigation model [3], [5] where
the nodes and edges represent various states of AUT and
transitions between states due to action events respectively.
This model can be updated dynamically based on business
logic [9], e.g., the same URL containing a different set of
actions based on authorization. The discovery of diverse states
in AUT is devised using tree-based traversal of the dynamic



navigation model [9]. This dynamic model is constructed using
the states as nodes discovered through exploration. Edges
indicate transitions ⟨s, a, s′⟩ between states using action a
from state s. Depth-first traversal is used to prioritize deeply
nested states that require a specific sequence of interaction
[18]. Moreover, this strategy ensures incremental discovery of
all states and tests the completeness of a particular path.

Instead of backtracking to immediate parent states, the
traversal is done starting from the root state for every trace.
On each change, the state abstraction mechanism is employed
to match similarity and extract executable actions. Afterward,
the actions are grouped and redundant actions are removed
through the behavioral grouping and redundancy reduction
steps respectively. Actions are executed automatically based
on the element’s type (using Puppeteer [19]), such as clicking
links or buttons, filling up input fields with random values
based on the type attribute, etc. Actions leading to external
resources are blacklisted from further interaction.

Initially, starting from the root page, all actions are marked
as “unexplored”. An unexplored unique action is selected at
random from the current web state and marked “active”. This
action exploration state mapping is maintained across ETs. For
a different trace starting from the root, the exploration strategy
needs to continue from the previous active action sequence.
Partially explored actions are marked “complete” recursively
when no actions in the resulting state are left incomplete. On
the other hand, grouped form actions are marked as complete
after considering possible interaction patterns - i) all inputs
left blank, ii) interact with all inputs, and iii) interact with a
subset of inputs. Finally, the entire process is repeated when
all actions from the root state attain exploration completeness.
The repetition promotes the exploration of new actions in
nested pages that might be unavailable before, e.g., the delete
functionality is exposed only after successful creation.

IV. EVALUATION AND RESULTS

To evaluate the effectiveness and efficiency in terms of
failure detection, eBAT is compared against the state-of-
the-art WebExplor [9], as it outperforms other model-based,
random, and model-free automated testing approaches. Upon
encountering a failure during trace execution (tracked via
browser console errors), it is added to the set of failures unique
to each state. The sequence of actions taken to exploit the
failure is stored as a failing test case. Both approaches were
compared using the same environment, parameters, failure
definition, initial login script, and AUT version. Code coverage
is measured in both approaches using a python wrapper of
Google’s Puppeteer library [19]. The source codes and results
of both eBAT and WebExplor are made publicly available [16].

Table I lists the benchmark projects used in literature [3],
[9], sampled from the most popular web frameworks based
on GitHub stars. To align with the baseline approach [9]
and remove any statistical bias, both approaches were run
15 times with a defined time budget of 30 minutes and
a state abstraction threshold of 0.8. Functionally duplicate
failures were filtered manually to get the unique number of

TABLE I: Comparison of failure detection effectiveness. (Val-
ues in bold and star indicate best average results along with
standard deviations over 15 trials and statistically significant
differences respectively)

Projects Unique Failures (#) Code Coverage (%)
eBAT WebExplor eBAT WebExplor

Dimeshift 6.9 (1.3) 8.3 (1.4) 0.9* (0.6) 0.3 (1.4)
Pagekit 10.2* (4.6) 7.5 (1.2) 90.2 (1.1) 89 (8.8)

Splittypie 20.6* (3.4) 6.3 (0.7) 65.1* (0.7) 57 (0.04)
Phoenix 3.9 (2.5) 3.2 (0.4) 50.4 (3.3) 50.9 (0.04)

Retroboard 22.5* (4.4) 5.3 (0.7) 51.7 (7.1) 51.3 (9.1)
Petclinic 43* (9.9) 18.2 (1.8) 45.8* (0.3) 41.2 (1.2)
Average 17.8 8.1 50.7 48.3

failures, e.g., in Splittypie, the same errors caused by separate
transaction entities were ignored. The evaluation was carried
out with the help of the following questions:

Effectiveness: How effective is eBAT in terms of failure
detection in web applications? The effectiveness of automated
web testing is measured by the unique number of failures
detected and code coverage [3], [9]. Table I shows the com-
parison in which eBAT significantly outperforms WebExplor
in 4 out of 6 projects separately using Mann-Whitney U test
at 0.05 confidence level (similar to [3], [9]).

Failures located in deeply nested pages in these projects
are exploited by eBAT through non-redundant exploration and
proper form submission. For instance, in Petclinic, exploiting
the forms (add/edit pets and add/edit visits) in the deeply
nested owner-detail page. Detecting such failures is difficult
for WebExplor due to the randomness in the action selection
policy, even with high-level DFA guidance. An exceptional
case is observed in Dimeshift where WebExplor is able to
detect “waking up” script errors due to redundant navigation
to wallet-detail page. As shown in Table I, WebExplor attains
more code coverage in Phoenix whereas eBAT fails to explore
them focusing on depth-first traversal. However, eBAT can
detect more failures due to its behavior-driven action selection
strategy as failure detection is not dependent on code coverage
[9]. Therefore, eBAT is evaluated to be more effective in terms
of failure detection compared to the baseline.

Efficiency: How efficient is eBAT in exploiting web applica-
tions? The efficiency is measured in terms of failure detection
rate similar to [9]. The plots in Fig. 3 demonstrate the compar-
ison in terms of efficiency where the x-axis indicates the time
elapsed and the y-axis indicates the number of unique failures
detected. Based on the plots, eBAT outperforms WebExplor
in 5 out of 6 projects within 5 minutes of execution. An early
jump in discovery rate is seen within 5 minutes in Pagekit,
Petclinic, Splittypie, and Retroboard (as shown in Fig. 3) as
they contain deeply nested pages. Proper form submission
saves time by avoiding unnecessary execution resulting in
the faster discovery of nested update functionalities in Trello.
Errors in Splittypie are discovered only after the creation of a
transaction event and navigating to its details.

WebExplor fails to exploit these scenarios in most cases
because - i) proper form submission gets interrupted by
other actions, and ii) selects actions that cause redundant



Fig. 3: Comparison of failure detection rate. Shaded areas
represent lower and upper bounds along with their average

exploration, even after the transition to less-visited areas
using DFA guidance. Therefore, eBAT is more efficient to
discover failures, employing the design decision of redundancy
reduction, behavioral grouping, and tree-based exploration.

V. THREATS TO VALIDITY

Evaluation on a limited number of projects (taken from prior
work [3]) poses an external validity threat as results may vary
based on projects. To mitigate this threat, open source projects
from the top 6 popular frontend frameworks are taken for
generalizability. The selected behaviors may have some con-
founding variables that are not considered in this preliminary
study, affecting the internal validity. However, these patterns
are identified from popular open-source projects to remove
developer-specific practices. The most common behaviors are
considered in this paper but there is scope to incorporate other
behaviors that may change the results. The replication package
[16] is provided for evaluation reproducibility.

VI. CONCLUSION AND FUTURE WORK

The approach presented in this paper, eBAT, bridges the gap
in automated testing by incorporating the tester’s behavioral
decisions taken during manual testing, such as non-redundant
exploration and grouped action interaction. This devised action
selection strategy executes non-redundant actions to generate
the execution trace. Redundancy reduction and behavioral
grouping of interdependent actions significantly improve fail-
ure detection against the state-of-the-art approach. Results
show that even simple behavior-driven decisions significantly

outperform the current state-of-the-art in the effectiveness and
efficiency of failure detection. Thus, focusing on enriching the
set of tester’s behavior rather than metric-based strategies can
make failure detection more efficient. Our future plan includes
the investigation of factors that affect approaches focusing on
metric maximization against human-level decisions.

ACKNOWLEDGMENT

This study is supported by the Fellowship from
ICT Division, Government of Bangladesh – No.:
56.00.0000.052.33.002.22-42, date: 12.06.2022

REFERENCES

[1] G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2007, pp. 291–305.

[2] A. M. Fard and A. Mesbah, “Feedback-directed exploration of web
applications to derive test models.” in ISSRE, vol. 13, 2013, pp. 278–287.

[3] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 142–153.

[4] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and input data
generation for web application testing,” in International Symposium on
Search Based Software Engineering. Springer, 2017, pp. 18–32.

[5] A. Mesbah and A. Van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 2009, pp. 210–220.

[6] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 67–78.

[7] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Automat-
ing test automation,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 881–891.

[8] “Crawljax,” 2017. [Online]. Available:
https://github.com/crawljax/crawljax

[9] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic
web testing using curiosity-driven reinforcement learning,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 423–435.

[10] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons
learned from automated testing,” in Proceedings of the 27th international
conference on Software engineering, 2005, pp. 571–579.

[11] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches and tools
for automated end-to-end web testing,” in Advances in Computers.
Elsevier, 2016, vol. 101, pp. 193–237.

[12] S. E. Sprenkle, L. L. Pollock, and L. M. Simko, “Configuring effective
navigation models and abstract test cases for web applications by
analysing user behaviour,” Software Testing, Verification and Reliability,
vol. 23, no. 6, pp. 439–464, 2013.

[13] T. E. Vos, P. Aho, F. Pastor Ricos, O. Rodriguez-Valdes, and A. Mulders,
“testar–scriptless testing through graphical user interface,” Software
Testing, Verification and Reliability, vol. 31, no. 3, p. e1771, 2021.

[14] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-duplicate detection
in web app model inference,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 186–197.

[15] F. S. Ocariza, K. Pattabiraman, and A. Mesbah, “Detecting unknown
inconsistencies in web applications,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 566–577.

[16] ebat, “ebat replication package,” 2022. [Online]. Available:
10.6084/m9.figshare.19906264.v1

[17] mozilla.org, “The input (form input) element,” 1998. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

[18] A. V. Singh and A. M. Vikas, “A review of web crawler algorithms,”
International Journal of Computer Science & Information Technologies,
vol. 5, no. 5, pp. 6689–6691, 2014.

[19] Google, “Puppeteer — tools for web developers,” 2010. [Online].
Available: https://developers.google.com/web/tools/puppeteer


