
Refactoring Community Smells: An Empirical
Study on the Software Practitioners of Bangladesh

1st Noshin Tahsin
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0914@iit.du.ac.bd

2nd Kazi Sakib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh
sakib@iit.du.ac.bd

Abstract—Community smells are organizational and social
anti-patterns in the development community that need to be
refactored. In the literature, studies on community smell refac-
toring are found from the very conceptual level. However, little is
known about the practitioners’ perceptions, refactoring readiness
and the refactoring strategies adopted in local software commu-
nities. This paper bridge this gap by exploring these issues in the
software industry of Bangladesh. A depth interview-based study
was conducted on local software practitioners chosen through a
convenience sample recruitment strategy. Interviews were tran-
scribed and analyzed using Straussian Grounded Theory. We col-
lected data on the four prominent smells according to literature
and introduced a new measure called ’Refactoring Readiness’
to calculate the community smell refactoring preparedness of
a software development community. Analyzing the data, it is
seen that 85% local practitioners perceive community smells as
harmful but less than half take step to mitigate those smells. We
identified the refactoring strategies (e.g. creating a structured
communication plan, mentoring) currently adopted by them and
found that the Refactoring Readiness of the software industry of
Bangladesh is 0.63 on a scale of 0-1. This provides evidence that
more work needs to be done for refactoring community smells
from the local sub-optimal development communities.

Index Terms—community smell, refactoring, empirical study

I. INTRODUCTION

Community smells are the set of organizational and social
anti-patterns in a development community [1] [2]. If reiter-
ated over time, they lead to the emergence of unforeseen
project costs connected to a sub-optimal software development
community. The existence of community smells eventually
hampers the overall production, operation, maintenance, and
evolution of software [3] [10] [14]. To minimize these issues,
it is necessary to follow some mitigation strategies.

Catolino et al. first referred to the community smell miti-
gation strategies as “refactoring” [6]. The field of community
smell refactoring has not received much attention in the local
context. It is not yet known whether software practitioners
from various types of local development communities are
aware of community smells. Additionally, it is unknown if they
are prepared to implement strategies to effectively reduce these
smells. Furthermore, there may exist differences in refactoring
practices among various local communities.

This study is supported by the Fellowship from ICT Division, Government
of Bangladesh – No.: 56.00.0000.052.33.002.22-42, date: 12.06.2022

Community smell refactoring is a less explored field in
the literature. In a study on a single software company,
Tamburri et al. [1] reported six mitigation decisions made
by the management board of that company. Catolino et al.
[6] conducted a survey based study to identify developers’
perception of community smells and the strategies adopted by
them to mitigate those smells. Sarmento et al. [13] replicated
the same study on Brazilian software teams to identify and
analyze localized refactoring practices. Similar studies on
developers’ perception and their refactoring practices need to
be conducted in other regions.

We have conducted such an empirical investigation on the
software community of Bangladesh. To conduct the study,
an interview questionnaire was designed based on [6] and
modified according to our goals. Pilot interviews were con-
ducted on five software practitioners to refine the draft ques-
tionnaire. Using the refined questionnaire, we took interview
of 21 software practitioners having considerable experience in
both software development and management. The practitioners
were chosen through a convenience sample recruitment strat-
egy [15]. Interviews were transcribed and analyzed applying
Straussian Grounded Theory [17] to find out the commu-
nity smell refactoring strategies adopted by the practitioners.
We introduced a new measure called Refactoring Readiness
score (RR score) to calculate the preparedness of a software
development community to effectively refactor community
smells and calculated the RR score of the software industry
of Bangladesh. Similar to [6] [7] [8], we chose the four most
prominent smells for our study - Organizational Silo, Black
Cloud, Lone Wolf and Radio Silence.

We show that, community smells are relevant in the
Bangladeshi software industry. 68.75% of respondents experi-
enced the four most prominent smells on average. For 80.9%
respondents, the smells occurred frequently or occasionally.
Exploring the local practitioners’ perception of community
smells, it is seen that, they perceive these smells as harmful
but do not take sufficient mitigation measures. Moreover, we
calculate that the RR score of the local software industry
is 0.63 on a scale of 0-1, which means more work need to
be done to make the industry refactoring ready. In addition,
we identify the refactoring strategies currently adopted in the
software industry of Bangladesh.



II. LITERATURE REVIEW

Recently, community smells have received attention from
the research community, which is growing day by day. Tam-
burri et al. [1] first identified these anti-patterns through
an industrial case-study and named those anti-patterns as
”community smells.” Numerous studies have been conducted
to investigate the relationship between those smells and a wide
range of socio-technical factors e.g., number of developers
who have changed the code in a project [4] as well as various
software artifacts e.g., code smells, fix-inducing changes [8]
[12]. Besides, studies have been conducted to determine the
effect of community smell on such artifacts [11]. Investigation
has also been done to find out ways of community smell
detection [5] and prediction techniques [9].

However, there is lack of sufficient research on refactor-
ing community smells. In a study on a software company,
Tamburri et al. [1] reported six mitigation decisions made by
seven interviewees from the company’s management board.
However, they mentioned that one of the decisions greatly
hampered further consequences while another caused the
emergence of subversive behaviour across the community.
Besides, the mitigation decisions from the management board
of a single company could not represent the whole software
industry.

Catolino et al. [6] defined an empirically grounded tax-
onomy of refactoring strategies for the most prominent four
smells - Organizational Silo, Black Cloud, Lone Wolf and
Radio Silence. To build the taxonomy, a study was conducted
on 76 software practitioners that confirmed the relevance of
community smells in industrial practice. The practitioners were
chosen through Convenience Sample Recruitment Strategy
[15]. Refactoring strategies adopted by them were collected
through an online survey. Data was analyzed using Straussian
Grounded Theory [17]. Common strategies mentioned in their
study include mentoring, creation of a communication plan,
and restructuring the community.

Sarmento et al. [13] replicated the same study on Brazilian
software teams to identify and analyze localized refactoring
practices. They chose participants following a mixed approach;
participants were selected based on availability, and referral-
chain [20]. They translated the survey instrument used by
Catolino et al. [6] in Brazilian Portuguese. A total of 184 re-
sponses were collected in the survey. The mitigation strategies
found from their study were similar to [6]. To explore whether
refactoring practices vary in regions, similar studies need to
be conducted for software communities in other regions, such
as the software community in Bangladesh.

III. METHODOLOGY

This study investigates the local practitioners’ perception
of community smells and refactoring strategies adopted by
them. To conduct the study, a draft interview questionnaire
was prepared based on the questionnaire used by Tamburri et
al [6], which was modified according to our goal. Then, pilot
interviews were conducted to refine the draft questionnaire
and depth-interviews were conducted on practitioners from the

Bangladeshi software industry. Finally, data collected through
interviews were transcribed to achieve the goals of the study.

A. Research Questions.
The goal of this study is to assess the current community

smell refactoring practices in the software communities of
Bangladesh. The following research questions RQs address
the goals of this study.
RQ1: How do the practitioners perceive community smells in
the local software industry?
RQ2: What are the strategies adopted in the software industry
of Bangladesh to refactor community smells?

B. Subjects and Objects of the Empirical Study.
The subjects of this study were carefully chosen through the

convenience sample recruitment strategy [15]. We conducted
interviews with our personal contacts working as software
professionals in the industry and recruited practitioners hav-
ing broader view of software project development and man-
agement. 70% of the participants rated themselves to have
considerable experience in project management, whereas 85%
of them rated themselves to have considerable experience in
software development. That is, the appropriate target audience
were reached through the recruitment strategy chosen. We
conducted a total of 21 depth-interviews where 90% of the
participants work as software engineers including development
team members, operations team members, and software archi-
tects, whereas 10% of them work as project managers. The
21 respondents have experience of working in a total of 18
different companies throughout their career. From these basic
descriptive statistics, we can claim that the opinions collected
are likely to provide us with reliable and generalized insights
regarding the current community smell refactoring practices
in the software industry of Bangladesh. Similar to [6] [7]
[8], we collected data about the most prominent community
smells: Organizational Silo, Black Cloud, Lone Wolf and
Radio Silence to answer these questions. The definition of
the smells are given below:

• Organizational Silo: The existence of silos in the devel-
oper community that communicate only through one or
two of its respective members.

• Black Cloud: Information overload due to the lack
of structured communication, people capable of bridg-
ing knowledge and experience gap between teams, and
knowledge sharing occasions (e.g., daily stand-ups).

• Lone Wolf: The presence of defiant contributors who
carry out their work without communication, with little
regard for their peers and their decisions.

• Radio-Silence: The situation when one developer from
a sub-team interposes herself into all formal commu-
nications between two or more sub-teams, becomes a
bottleneck and prevents the introduction of other parallel
communication channels.

C. Questionnaire Construction and Interview Conduction.
To collect participants’ opinions, we designed an interview

questionnaire based on the study conducted by Tamburri et



al. [6], which is composed of four main sections. The first
section of the questionnaire describe a vignette-based scenario
[16] for each of the four community smells. All the scenarios
can be found in the questionnaire 1. After explaining the
scenarios, we ask the participants the following questions:
Q1. Has this situation ever happened to you?
Q2. If yes, how did you address this situation?
Q3. Do you think the mentioned scenario is problematic?
Q4. Do you think a systematic approach is necessary to deal
with the above scenarios?
Q5. If there is such an approach, will you follow it?
Q6. Have you ever heard of community smells?
Q7. How frequently did the aforementioned scenarios occur?

Q1, Q3-Q6 can be answered with yes/no. Q2 is an open-
ended question. Q7 is a multiple-choice question with three
options: frequent, moderately frequent and not so frequent.

We prepared a version of the questionnaire in Google
Form and filled up the answers during the interview. The
answers to the open-ended questions were recorded for further
analysis. Pilot interviews were conducted on 5 local software
practitioners to refine the draft questionnaire. The final ques-
tionnaire was then developed based on feedback from the pilot
interviews. 21 depth interviews with local practitioners were
conducted. We kept the interviews anonymous due to privacy
concerns. Prior to the interviews, participants were informed of
their anonymity so that they could answer honestly. We never
mentioned the term Community Smell until the end of the
interview to avoid influencing the responses. The interviews
lasted approximately 25-35 minutes.

D. Data Analysis.

We transcribed the interview responses from the recordings
for further analysis. To address RQ1 we counted a) how
many times the practitioners answered ‘yes’ to Q1 so that
we can understand the relevance of community smells in the
software industry of Bangladesh b) how many times have the
practitioners answered ‘yes’ to Q3-Q5, so that we can identify
how the practitioners perceive community smells in the local
software industry c) how many times have the practitioners
answered ‘yes’ to Q6, so that we can understand the state of
their awareness regarding community smells.

To answer RQ2, we analyzed the transcribed responses to
Q2 using Straussian Grounded Theory [17]. It is appropriate in
analyzing open-ended questions with exploratory nature since
it does not assume the presence of any previous theory to
be tested over the data. To perform open coding, we split
the sentences from the transcribed interview responses using
standard text separators (e.g., commas or semicolons). Then,
initial labels were assigned to the split parts based on the
content. We clustered labels which are semantically similar or
identical according to the semantic similarity principle [18].
The labels were renamed to better reflect the various categories
of refactoring strategies adopted. We iterated over the labels

1https://forms.gle/7H5yewDVvJqKdeXm9

until we reached a theoretical saturation [19]. Finally, based on
the labels assigned to the transcribed responses, a taxonomy
of refactoring strategies was built for each community smell
considered in the study.

E. Measuring Refactoring Readiness.

We consider the following indicators to determine whether
a software industry is ready to refactor community smells: a)
Refactoring History: The more cases where community smells
are refactored (either mitigated after occurrence or prevented
before occurrence) in an industry, the more refactoring ready
the industry is. b) Perception: The more community smells
are perceived as harmful, the more eager the industry will be
to refactor those smells, and it will be more refactoring ready.
c) Knowledge: The more practitioners know about community
smells, the better they realize the consequences. As a result,
they will want to refactor those smells and will be willing to
implement mitigation measures.

Based on these indicators, we propose a new measure named
Refactoring Readiness (RR) to provide a quantification of
the practitioners’ preparedness for adopting community smell
refactoring strategies. Equation (1) presents the formula for
measuring Refactoring Readiness of a software community;
where n is the total number of smells taken into consideration,
tsi is the percentage of cases where either mitigation action
was taken after occurrence of the smell i or practitioners did
not experience the smell as a result of preventive measures,
e is the percentage of practitioners who perceive community
smells as harmful and want a mitigation strategy, and k is
the percentage of practitioners who have heard of community
smells before. We add up all the values for the indicators to
get an overall idea of how much refactoring ready a software
community is. Here, n+2 is used as a normalization factor. The
value for tsi was found analyzing the answers of Q1 and Q2.
The values for e was found analyzing the answers of Q3-Q5.
The value for k was found analyzing the answer of Q6.

IV. RESULT

In this section, we report and discuss the results of our
study. Our findings on the practitioners’ perception of com-
munity smell in the software industry of Bangladesh and their
Refactoring Readiness are presented first. Then, the refactoring
strategies adopted by them to mitigate the Organizational
Silo, Black Cloud, Lone Wolf and Radio Silence smells are
presented.

A. RQ1. Practitioners’ Perception of Community Smells
To understand how the practitioners perceive community

smells, we asked them Q1 and Q3-Q6 mentioned in Section
III-C. Analyzing the responses to Q1, we see that, 70%,
65%, 80%, and 60% of participants faced the Organizational
Silo, Black Cloud, Lone Wolf, and Radio Silence smells
respectively. In 80.9% of the cases, the smells were frequent
or moderately frequent. This was found from the responses
to Q7. From the responses of Q3-Q5, it is seen that, 85% of
them perceive community smells as detrimental to software



TABLE I
MEASURES AND THEIR CORRESPONDING VALUES FOR CALCULATING

REFACTORING READINESS

Metric Value Metric Value Metric Value
tsorganizationalsilo 0.7142 tslonewolf 0.7619 e 0.85
tsblackcloud 0.5952 tsradiosilence 0.5714 k 0.30

maintenance and perceive the need for some refactoring strate-
gies. Moreover, analyzing the responses to Q2, it was found
that in 38.1%, 47.61%, 19.04% and 42.86% of cases where
the Organizational Silo, Black Cloud, Lone Wolf, and Radio
Silence smells occur respectively, no refactoring strategies are
adopted. Furthermore, from the responses to Q6, we see that,
70% of the respondents had never heard about community
smells before. That is, the local practitioners faced these
smells, perceive them as harmful but do not take sufficient
measures to mitigate those smells.

Based on the data, we calculated the Refactoring Readiness
of the local software industry using (1). Since only the four
most prominent smells are being studied in this study, the
value of n in our case is 4. The values of tsi, e and k for our
data is provided in Table 1. The Refactoring Readiness of the
local software practitioners calculated from our data is 0.63 on
a scale of 0-1. This score shows that more focus is necessary
for making the local practitioners refactoring ready.

B. RQ2. Community Smell Refactoring Strategies Adopted
by Local Practitioners

In this subsection, we discuss the refactoring strategies
adopted by the software practitioners of Bangladesh.

1) Organizational Silo: Practitioners reported the following
strategies to deal with this smell.

Creating a structured communication plan. 38.1% of
practitioners create a detailed and structured communication
plan to ensure that communication channels are functioning
properly and members are effectively conveying messages.
Team leaders discuss the issue with the sub-team in charge
and devise communication strategies to address it. Daily
scrums, weekly follow-up meetings, and ice-breaking sessions
are held. Number of meetings are increased to address the
consequences of the smell. Strict guidelines are established to
ensure everyone is communicating effectively.

Mentoring. In 4.76% of the cases, the project managers
collaborate with practitioners to find solutions and ensure
that everyone understands the communication rules. They
ensure that everyone on the team is following the rules,
communicating effectively, and keeping each other informed.
Pressure from higher authorities is also applied in this case.

Restructuring communication approach. To address the
problems caused by the smell, management replaces team
members with new members in charge of communication. Fur-
thermore, when a team member goes on leave, she designates
someone else to cover for her in order to avoid the formation
of silos. This strategy is used by 4.76% of practitioners.

RR =
(
∑n

i=1 tsi) + e+ k

n+ 2
(1)

Indirect approach. In 4.76% of the cases, the management
reportedly adopt an indirect strategy to address this smell. For
example, in daily meetings, they ask developers questions like
“what has been done today?” rather “what have you done?”
To respond to such a question, the team member must stay
informed of what his fellow team members are doing. This
results in the person responsible for the smell becoming aware
of herself and improving her communication skills in future.

Nothing done. 38.1% of practitioners who experienced this
smell reported that, despite the negative consequences and
practitioners’ interest, team management is not interested in
resolving this problem. In 19.04% cases, the management does
not perceive this as a problem at all.

2) Black Cloud: Practitioners reported the following strate-
gies to deal with this smell.

Creating a structured communication plan. To refactor
this smell, 67.67% of practitioners use a structured com-
munication plan. They maintain regular formal and informal
communication (e.g., daily scrum, day-end meetings,weekly
follow-up meetings). The team leader thoroughly explains
tasks to newcomers. Issue tracking tools (e.g. Jira, Trello) and
communication tools (e.g. Skype, Microsoft Teams, Slack) are
extremely beneficial in this regard. Proper documentation is
maintained, recordings of meetings are stored for members
absent in meetings so that they can catch up later. Members
make up any missing items through subsequent formal or
informal discussions. Furthermore, a clear HR policy for
timely communication is beneficial to deal with this smell.
For example, when employees go on leave, they notify the
team lead as soon as possible.

Creating realistic task plan. 4.76% of the practitioners en-
sure realistic task assignment and time estimation considering
the developers’ viewpoint to deal with these smells.

Introduction of a social sanctioning mechanism. Ac-
cording to 4.76% of the practitioners, community members
violating the specified communication guidelines and failing
to attend review sessions are penalized to address this issue.

Restructuring community. 4.76% of the practitioners re-
ported, when something is unclear (e.g. work context, particu-
lar feature), pairing of developers is done to clarify confusion.

Nothing done. 47.61% practitioners reported that team
management is not interested in solving the issue; developers
had to suffer the consequences on their own.

3) Lone Wolf: Practitioners reported the following strate-
gies to deal with this smell.

Mentoring. 52.38% of the practitioners reported that men-
toring is done to mitigate this smell. If necessary, the higher
authority steps in to solve the problem.

Creating a structured communication plan. To identify
and groom lone wolves, Weekly meetings are carried out.
Work decisions are made after discussions in the presence of
them. Team members communicate with them on a regular
basis. Furthermore, the lone wolf is instructed to keep proper
documentation of every task they perform in order to avoid
information gaps. 19.05% practitioners follow this strategy.



Restructuring community. 14.28% of practitioners claim
that lone wolves are paired with other developers so that the
latter is kept informed of the lone wolf’s tasks. Additionally,
peer reviews are set up to address this problem. Moreover, to
utilize the lone wolfs, team leaders assign the lone wolves to
solo projects since solo projects require less communication.

Increased Cohesion. According to 4.76% of practitioners,
arranging activities to increase cohesion among team members
do not leave any room for the emergence of this smell.

Termination. 9.52% practitioners said that, if the lone wolf
remains the same even after mentoring, they are terminated.

Nothing done. 19.04% practitioners claimed that team
management takes no action to address the problem. 9.52%
of them do not even consider it to be problematic.

4) Radio Silence: Practitioners reported the following
strategies to deal with this smell.

Restructuring community. 38.1% of the practitioners re-
ported that small teams are formed and parallel communication
channels are established to address this smell. Additionally,
to lessen the burden on the bottleneck, tasks and necessary
knowledge are distributed among several people.

Creating a structured communication plan. A commu-
nication plan is developed to specify who the bottleneck
should communicate with when they encounter problems. This
enables them to get help and speed up the process. Besides,
team members are encouraged to communicate spontaneously
so that one particular individual do not have to maintain all the
communication. 14.28% of practitioners followed this strategy.

Increased Cohesion. 4.76% of practitioners claimed to
have work environment that improves team cohesion, which
prevents the emergence of this smell.

Nothing done. 42.86% of those who faced this smell
claimed that team management takes no action to address the
problem. 4.76% of them do not consider it as problematic.

According to the findings, the Refactoring Readiness score
of the software industry in Bangladesh is 0.63. This indicates
that practitioners in the Bangladeshi software industry are still
not ready to effectively refactor community smells, and that
more work is required to prepare the industry for refactoring
those smells. The refactoring strategies identified in this study
can be useful in this regard. Practitioners who do not take
any mitigation measure can follow this strategies to refactor
community smells.

V. CONCLUSION

Refactoring community smells from software industry re-
quires understanding the practitioners’ current refactoring
practices first. In this study, we have taken the first step
towards addressing these issues for the software industry of
Bangladesh. An interview questionnaire was designed and
depth interviews were conducted on 21 software practitioners
of Bangladesh. A measure for calculating the Community
Smell Refactoring Readiness (RR) of a development com-
munity was introduced, the Refactoring Readiness for the
software industry of Bangladesh was calculated as well as the
refactoring strategies that the local practitioners adopt were

presented. This study confirms that there is a visible lack
of awareness among local practitioners regarding community
smell refactoring. Our research agenda includes replicating the
study with more practitioners and increasing the generalizabil-
ity of the results achieved so far. We plan to include rest of
the 21 community smells in our future work.

REFERENCES

[1] Tamburri, D.A., Kruchten, P., Lago, P. and Vliet, H.V., 2015. Social
debt in software engineering: insights from industry. Journal of Internet
Services and Applications, 6(1), pp.1-17.

[2] Tamburri, D.A., Kazman, R. and Fahimi, H., 2016. The architect’s role
in community shepherding. IEEE Software, 33(6), pp.70-79.

[3] Tamburri, D.A., 2019. Software architecture social debt: Managing the
incommunicability factor. IEEE Transactions on Computational Social
Systems, 6(1), pp.20-37.

[4] Almarimi, N., Ouni, A. and Mkaouer, M.W., 2020. Learning to detect
community smells in open source software projects. Knowledge-Based
Systems, 204, p.106201.

[5] Almarimi, N., Ouni, A., Chouchen, M., Saidani, I. and Mkaouer,
M.W., 2020, June. On the detection of community smells using genetic
programming-based ensemble classifier chain. In Proceedings of the 15th
International Conference on Global Software Engineering (pp. 43-54).

[6] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A. and Ferrucci,
F., 2020, June. Refactoring community smells in the wild: the practi-
tioner’s field manual. In Proceedings of the acm/ieee 42nd international
conference on software engineering: Software engineering in society (pp.
25-34).

[7] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A. and Ferrucci,
F., 2020. Gender Diversity and Community Smells: Insights From the
Trenches. IEEE Software, 37(01), pp.10-16.

[8] Palomba, F., Tamburri, D.A., Fontana, F.A., Oliveto, R., Zaidman, A.
and Serebrenik, A., 2021. Beyond technical aspects: how do community
smells influence the intensity of code smells?. IEEE Transactions on
Software Engineering, 47(1), pp.108-129.

[9] Palomba, F. and Tamburri, D.A., 2021. Predicting the emergence of
community smells using socio-technical metrics: A machine-learning
approach. Journal of Systems and Software, 171, p.110847.

[10] Tamburri, D.A.A., Palomba, F. and Kazman, R., 2021. Exploring com-
munity smells in open-source: an automated approach. IEEE Transac-
tions on Software Engineering, 47(3), pp.630-652.

[11] Ahammed, T., Ahmed, S. and Khan, M.S.A., 2021. Do Missing Link
Community Smell Affect Developers Productivity: An Empirical Study.
Knowledge Engineering and Data Science, 4(1).

[12] Ahammed, T., Asad, M. and Sakib, K., 2021. Understanding the
Relationship between Missing Link Community Smell and Fix-inducing
Changes. In ENASE (pp. 469-475).

[13] Sarmento, C., Massoni, T., Serebrenik, A., Catolino, G., Tamburri, D.
and Palomba, F., 2022, December. Gender Diversity and Community
Smells: A Double-Replication Study on Brazilian Software Teams. In
29th IEEE International Conference on Software Analysis, Evolution
and Reengineering.

[14] Palomba, F., Tamburri, D.A., Fontana, F.A., Oliveto, R., Zaidman, A.
and Serebrenik, A., 2018. Beyond technical aspects: How do community
smells influence the intensity of code smells?. IEEE transactions on
software engineering, 47(1), pp.108-129.

[15] Robinson, O.C., 2014. Sampling in interview-based qualitative research:
A theoretical and practical guide. Qualitative research in psychology,
11(1), pp.25-41.

[16] Finch, J., 1987. The vignette technique in survey research. Sociology,
21(1), pp.105-114.

[17] Corbin, J.M. and Strauss, A., 1990. Grounded theory research: Proce-
dures, canons, and evaluative criteria. Qualitative sociology, 13(1), pp.3-
21.

[18] Harispe, S., Ranwez, S., Janaqi, S. and Montmain, J., 2015. Semantic
similarity from natural language and ontology analysis. Synthesis Lec-
tures on Human Language Technologies, 8(1), pp.1-254.

[19] Walker, J.L., 2012. Research column. The Use of Saturation in Quali-
tative Research. Canadian journal of cardiovascular nursing, 22(2).

[20] Baltes, S. and Ralph, P., 2022. Sampling in software engineering
research: A critical review and guidelines. Empirical Software Engi-
neering, 27(4), pp.1-31.


