
An optimized tool for language independent
program slicing

SE 801

Submitted By

Fazle Mohammed Tawsif

BSSE 0628

Supervised By

Dr. Kazi Muheymin-Us-Sakib

Professor

Institute of Information Technology

University of Dhaka

Institute of Information Technology

University of Dhaka

Bangladesh

29 October 2017

Approved By

Contents

1 Methodology 1

1.1 Overview of proposed slicing technique 1

1.1.1 Build Repository . 2

1.1.2 File checksum . 2

1.1.3 Test Value Generator . 3

1.1.4 Line deletion/slicing . 3

1.1.5 File generation and Execution 4

1.1.6 Validation . 4

1.2 Build source repository . 5

1.3 Sliced source generation . 5

1.4 Compilation and Execution . 6

1.5 Test value generation . 7

1.6 Slice validation . 9

References 10

ii

List of Figures

1.1 Dependence graph of a program . 2

iii

Chapter 1

Methodology

In this chapter, an approach is proposed that can minimize the compilation error of

the language independent program slicing process. It is mentioned in the previous

chapter that existing approach can slice programs. Moreover, it tries to compile and

execute the sliced programs as soon as it deletes a line from the source code. But

it is not the ideal scenario of each time because, in the case of large programs, the

amount of compilation error gets too high. Compilation without any type of checking

cause this high compilation rate as well as high slicing time. It is probable that

execution error can be occurred due to syntactic or semantic error. It is assumed

that few statements which are common among the programming languages such as

conditional syntax can be omitted from compilation after some checking. In order to

overcome the above limitation of the existing approach, an approach namely MLIPS

is proposed and developed that can slice programs with less compilation error as well

as in less time than previous approach ORBS. The proposed approach is exhaustively

described in the following section of this chapter.

1.1 Overview of proposed slicing technique

The internal architecture of MLIPS is shown in figure1.1 The architecture contains six

small components where each component performs predefined responsibilities. The

information flow and the activity of each component are described below.

1

Figure 1.1: Dependence graph of a program

1.1.1 Build Repository

In MLIPS, a list of source code is provided as input which contains program written in

different language. From these source codes, a source repository is built with available

information such as line number, code contents, file names etc. The repository also

maps the source code lines with file names and other counts such as line counts, file

counts etc. This repository will be used for parsing and slicing. After slicing the

repository codes, it maps the sliced programs with source code files which contains

all the valid slices of each source code file.

1.1.2 File checksum

File checksum component is used for file validation. Sliced source file is mapped

with a checksum for reuse. It generates a checksum for each file. This checksum is

mappad against a hashcode. It is used for identifying same executable bytecode of

sliced programs. If any checksum of executable bytecode is matched with the previous

2

checksum, then the value of previous executable codes are used. Using the previous

executable output is considered as cached compilation output. Checksum also helps

to identify any changes in the source file by comparing the previous checksum value.

1.1.3 Test Value Generator

Test value generator generates test value output for comparing the output of sliced

programs output. This test value is used by validation state. Test value generator uses

the initial or base source codes/programs. It compiles and executes these programs

to get the test value and then stored for later use.

1.1.4 Line deletion/slicing

Line deletion is the core procedure of language independent program slicing. MLIPS

uses this component to delete each line step by step. Line deletion window is incre-

mented using a step function. The value of this step function is incremented after

each successful iteration of all line. The maximum value of step function is defined

initially. This deletion process is the modified version of the previous implementation

of program slicing ORBS. A conditional checking is introduced in this modification

to minimize the overall compilation error. It checks each line before delete. And then

omits lines which contain conditional statements. This checking step is mentioned

previously in the Introduction section of this chapter. Conditional statements such

as if, else if, else etc. can be transformed into a generalized syntax after some ma-

nipulation. The statements are transformed into generalized form while checking. If

the line does not contain any conditional statement, then the line is deleted. After

deletion of the line, this source code is compiled and executed. If the compilation

and execution are completed without any error, then the output is compared with

the test output. The sliced code is stored for later use after a successful comparison

of current output and test output. A list of all lines of the source codes is maintained

to keep track of deleted lines. This list is hashed after each deletion then mapped

with the binary file checksum to use them later as a cached compilation. This hash-

checksum mapping is considered as slice cache. On the other hand, the output from

the execution of binary file is mapped against each checksum. This output-checksum

mapping is considered as result cache. The slice cache and the result cache are used

later for cache compilation where deleted lines list hash is same with some previously

hashed list. Deletion of line completed after traversing all the existing line. It also

excludes lines which are commented. Commented lines are identified by analyzing

3

general syntaxes for comment in programming languages.

1.1.5 File generation and Execution

The source code of sliced programs are generated. File generation process uses the list

of deleted lines which is mentioned in the previous component. It eliminates the lines

which are marked as deleted. Then generate source codes with the available lines from

the list in a target directory. Execution process is done in two steps. The first step is

compilation and the second step is execution. On the first step, generated source files

are compiled with the system compiler according to their programming language.

The compiler generates some executable bytecode if the compilation is successful

or move to next step of deletion. Executable bytecodes are used for generating a

checksum. These checksums are used for mapping the output with the executables.

This mapping is later considered as cache compilation. Later on the second step,

executable files are executed according to their compiler syntax. The output of this

execution is stored in the result mapping against the checksum executable bytecodes.

In this step, the output state is not considered whether it is error or correct. The

output value is stored for later validation.

1.1.6 Validation

Validation process store the valid slices. It compares the sliced program output with

the test value. If the sliced program output matched with test value, then that sliced

program is stored.

It is seen that the proposed technique comprises five procedures and one algorithm.

The five procedures namely buildSourceRepository, generateSlicedFile, compileFile

and executeFile, getTestOutput, validate are used to get the required source files,

generate sliced flies, running source code and generating test output for validation.

The only algorithm namely SliceSource is used to delete source code which is used

as a sliced program. Finally, this sliceSource algorithm iterates over the base source

code with different deletion window and generate various slice. Valid program slices

are preserved.

4

1.2 Build source repository

As mentioned earlier, program slicing requires source codes of various languages. For

this purpose, a source repository is built. Procedure 1 states the repository building

process.

Procedure 1: Build source repository

Input: Source code root path

Output: Source repository containing information of valid source codes

1 begin

2 repository ←− φ;

3 foreach file f ∈ rootfile do
4 if f.type ∈ supported type then
5 fileContent.name← f.name ;

6 fileContent.lines← f.lines ;

7 fileContent.lineCount← f.lineCount ;

8 fileContent.directory ← f.directory ;

9 fileContent.type← f.type ;

10 repository ←− repository ∪ fileContent;
11 else

12 continue;

13 end

14 end

15 end

A root path of the source codes is provided as input in procedure 1. It takes

all the supported programs in the repository. Each entry of the repository contains

file name, content, directory path and line count. Line:4, procedure 1 sort out the

supported source files from the directory. Line: 10 includes each supported file entry

in the repository.

1.3 Sliced source generation

After each successful slicing, source files are generated from a list of lines where

deleted lines are marked. Files are generated excluding those deleted lines. Procedure

2 exhibits the process of file generation.

5

Procedure 2: Generate sliced source file
Input: A list of deleted lines from initial source code

Output: Sliced source codes in a target directory

1 begin

2 Lines;

3 DeletedLines;

4 for j ← 1 to length(Lines) do

5 FileName ← Lines [j].fileName ;

6 content ← Lines [j].content ;

7 if DeletedLines [j] == false then

8 append(FileName, content) ;

9 end

10 end

11 end

Procedure 2 takes a list of lines and list of deleted lines as input. Generates source

files with the sliced codes as output. Line 5, 6 take name and line content from the

list. If the line is not deleted then it is appended to the file which occurs in Line

8. This procedure is used every time a line is deleted. Source files are generated for

further compilation and execution.

1.4 Compilation and Execution

Procedure 3 illustrates the compilation process. Source code compilation is used in

two steps in slicing process. Initially, the compilation process is used in test value

generation, later this process is used after a line deleted. After successful compilation,

bytecode is generated for execution. If any compilation fails it returns false to the

slicing process.

6

Procedure 3: Compile source file

Input: A list of source code

Output: Generate executable bytecode

Result: Return true if successful otherwise false if error

1 begin

2 Files;

3 foreach file f ∈ Files do

4 Compiler ← GetCompiler(f.type) ;

5 Error ← Compiler.compile(f) ;

6 if Error == false then

7 return true ;

8 else

9 return false ;

10 end

11 end

12 end

Procedure 3 takes source code as input and produce executable bytecode as output.

On the Line: 4, appropriate compiler is obtained using file extension type. Line:

5, compiles the file and preserve the output. If the compilation is successful then

it returns true otherwise false. Beside compilation process, execution process also

follows the same procedure 3. The main difference from compilation process is, it

takes executable bytecodes as input and generate a value after execution as output.

1.5 Test value generation

The test value is used for validation of the sliced program. Test generation is com-

pleted in the very first stage of slicing process. Test generation is completed in two

steps. The first step is used for source file compilation and second step for execution.

7

Procedure 4: Generate Test Output

Input: A list of initial source code

Output: Value or list of values of the executed source codes

1 begin

2 Files;

3 Output;

4 ExecutableFiles;

5 foreach file f ∈ Files do

6 Error ← compile(f) ;

7 if Error == true then

8 return FAIL ;

9 else

10 ExecutableFiles ← ExecutableFiles ∪ getExecutableExtention(f) ;

11 end

12 end

13 foreach file exf ∈ ExecutableFiles do

14 Error ← exf ;

15 if Error == true then

16 Output ← append(Output, FAIL) ;

17 else

18 Output ← append(Output, OutputV alue) ;

19 end

20 end

21 return Output;

22 end

Test generation process takes initial source codes as input. Line 5 to 11 in proce-

dure 4 is for compilation and line: 13 to 19 for execution. The output of this step is

stored which is stored for later validation process.

8

1.6 Slice validation

Procedure 5: Validate sliced programs

Input: Output value of sliced source code and Initial code outout value

Output: Returns true if validation successful, otherwise false

Result: True indicate that slice need to be stored otherwise eliminate the

sliced program

1 begin

2 TestValue;

3 SlicedOutput;

4 isSame ← check(SlicedOutput, TestValue) ;

5 if isSame == true then

6 store() ;

7 return true ;

8 else

9 return false ;

10 end

11 end

9

Algorithm 6: Validate sliced programs

Input: Source program, P = p1,, pn and maximum deletion window size, δ

Output: slice, S , of P

1 begin

2 O ← Setup(P)

3 V ← Execute(Build(P))

4 S ← O

5 repeat

6 deleted← False i← 1 while i ≤ length(S) do

7 builds← False

8 for i← 1 to δ do

9 if ¬ContainsConditional(smin(length(S), i+ j − 1)) then

10 S ′ ← S - si,, smin(length(S), i+ j − 1)

11 else

12 continue

13 end

14 B′ ← Build(S ′) if B’ built successfully then

15 builds← True break

16 end

17 end

18 if builds then

19 V ′ ← Execute(B’) if V = V’ then

20 S ← S ′ deleted← True

21 end

22 else

23 i← i+ 1

24 end

25 end

26 until ¬ deleted ;

27 return S

28 end

10

Bibliography

11

