
Interface Driven Code Clone Detection

Md Rakib Hossain Misu∗, Kazi Sakib†
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: bsse0516@iit.du.ac.bd∗, sakib@iit.du.ac.bd†

Abstract—Code cloning is a common code reusing technique
that occurs when developers replicate similar pieces of code
fragments within or between software repositories. Another
replication happens when developers repeat method interfaces
(i.e., method name, return and parameter types). Two methods
are prone to be cloned when those have similar interfaces
and perform similar functionalities. Considering this, a new
lightweight Interface Driven Code Clone Detection (IDCCD)
technique is proposed, that can detect clones by using method
interface similarities. First, the method blocks are tokenized
from the source files. For those method block tokens, interface
information is extracted and indexed with mapped tokens. Then,
similar interfaces are queried from that index and compared
those with a similarity function for detecting clones. IDCCD
is evaluated with other state of the art techniques by using
BigCloneEval framework. The experimental results show that
IDCCD performs similar comparing to other existing tools with
a lower complexity.

Keywords-Code Clone, Clone Detection, Interface

I. INTRODUCTION

Code clones occur when developers replicate codes within

or between the software repositories through copying and

pasting, automatic code generation or plagiarism. A common

replication that appears in large software repositories is method

interface. It refers the return type, method names and param-

eter types of a method that repeats exactly or similarly. If

two methods contain the similar interface, it is very likely

that those perform analogous functionalities. It indicates that

these methods should be semantic or syntactic code clone to

each other. So, interface similarity should have significance

for detecting clones.

Clone detection tools and techniques differ from many as-

pects such as what type of detection algorithm is used, how the

source code is represented to operate and how various clones

can be detected. Textual based techniques use string matching

algorithms that are perfect for detecting exact clones but do

not work faster for larger dataset, and thus face scalability

issues. For example, Cordy et al. applied the Longest Common

Subsequence (LCS) algorithm in their tool called NiCard [1]

for an efficient text line comparison to find nearly mismatched

clones. AST based techniques [2] are useful for refactoring of

clones, but they may not scale well as parse trees contain

high memory. Token based techniques gain high recall but

may yield clones which are not syntactically complete.

Sajnani et al have introduced a token based approach called

SourcererCC [3] that works faster for large code repositories.

They have used sub block overlapping and token positioning

heuristic to reduce code fragments for efficient comparison.

Figure 1. Overview of Interface Driven Clone Detection Process

Similar to SourcererCC [3], Jefferey et al. have proposed a

flexible technique CloneWorks for detecting various types of

clones [4]. Both SourcererCC [3] and CloneWorks [4] compute

sub-block overlapping tokens for indexing that needs extra

mathematical calculation and execution time before making

actual method fragment comparison.

In this paper, a light weight Interface Driven Code Clone

Detection (IDCCD) technique is proposed. This technique can

detect clones by using interface information. First, source files

are tokenized into method blocks and interface information

(i.e., keywords, return and parameter types) is extracted. An

inverted index is built using that interface information and

mapped into the method block tokens. For each method block,

similar interfaces are queried from that index and compare

those with a similarity function. Finally, pairs of method

blocks are reported as clone, if those satisfy a minimum

similarity threshold. The experimental results are promising

that yields to use interface similarities for detecting clones.

II. OVERVIEW OF IDCCD

Figure 1 represents the three steps of IDCCD such as (i)

Token Generation, (ii) Interface Index Creation and (iii) Clone

Detection. A brief description of each step is mentioned below.

In token generation step, first source files are transformed

into AST representation by using Eclipses ASTParser. Method

blocks are extracted by traversing AST nodes. The extracted

method blocks are tokenized with a simple scanner, that is

aware of token and block semantics of a given language.

Currently, this tokenization only works for Java.

In the index creation step, interface information (i.e., method

name, return and parameter types) are extracted from method

blocks. After that, keywords are extracted from the method

names by removing stop words and performing stemming.

Then, synonyms and antonyms of those keywords are iden-

tified by using standard WordNet Library. Finally, for each

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.97

747

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.97

747

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.97

747

method block it provides interface information including (i)

return type, (ii) keywords from method name (iii) a set of

synonyms and antonyms of those keywords and (iv) parameter

types. Next, this information is used to build an inverted

interface index that maps tokens of the method block.

In clone detection, for each method block, IDCCD retrieves

the candidate method block tokens from the interface index

by querying. Since the interface index is built using interface

(i.e., keywords, return and parameter types), only the interface

of those method blocks is used to query into the index.

The interface index only results those method block tokens

that are similar to query interface. As a result, detection

comparison is performed among the method block tokens for

which interfaces are similar. After getting all candidate method

blocks, clone detection is performed by modified Jaccard

similarity metric that is also used by CloneWorks [4]. It first

takes a pair of method blocks as a set of tokens, and computes

minimum token intersection ratio. Finally, a pair of method

blocks is reported as method clone, if these blocks satisfy

user given similarity threshold.

III. EVALUATION

To evaluate IDCCD performance, recall and precision are

calculated using a clone evaluation framework namely Big-

CloneEval [5]. It contains a standard clone benchmark called

BigCloneBench [5].

A. Experimental Setup

BigCloneEval evaluates the performance of the clone de-

tection tool with recall and precision using BigCloneBench.

BigCloneBench contains manually validated clone pairs. It

includes a repository called IJDataset2.01 containing 25K open

source Java projects with 3 million source files and 250

MLOC. All types of clones such as Type-1 (T1), Type-2 (T2)

, Type-3 (T3) and Type-4 (T4) present in BigCloneBench.

However, there is no agreement on, when a clone is no longer

syntactically similar. As a result, it is difficult to separate T3

and T4 clones [5]. So, researchers categorized IJDataset’s T3

clones into Very Strongly Type 3 (VST3) and Strongly Type

3 (ST3) based on the similarity threshold. VST3 and ST3

clones contain 90% and 70-90% syntactical similarity. TABLE

I represents the number of clones present in BigCloneBench.

For experiment, standard configuration parameters are set

to minimum 6 lines and greater than 50 tokens with 70%

similarity threshold. IDCCD is run in BigCloneEval’s VM

with an average workstation (e.g., 3.26GHz quad-core i7, 8GB

ram and 500GB drive). Comparative results are also generate

and presented in TABLE II.
B. Result

Recall measured by BigCloneEval is summarized in TABLE

II. It is summarized using various types such as intra-project,

inter-project, T1, T2 and T3 category (e.g., VST3, ST3).

IDCCD had perfect detection of T1 clones with 100% recall.

For detecting T2 clones, it achieved near perfect recall of 98%.

1IJaDataset 2.0, http://secold.org/ projects/seclone

TABLE I. BigCloneEval Clone Summary

Clone Type T1 T2 VST3 ST3 Intra-Project Inter-Project
Clone Pairs 48,116 4,234 4,577 9,569 47,852 17,265

TABLE II. Recall Comparison of IDCCD with Stat-of-the-art Techniques

Tool
Clone Type

T1 T2 VST3 ST3 Intra
Project

Inter
Project

Precision

IDCCD 100 98 96 81 98 88 84
CloneWorks 100 100 100 92.5 96 84 87
SourcererCC 100 98 93 61 96 82.75 83
NiCad 100 100 100 95 99.75 98.25 56
Deckard 60 54 62 31 56.5 49.5 28

In VST3 and ST3, it gained 96% and 81% recall similar to

other tools. For intra-project and inter-project clones, IDCCD

performed well and was able to gain 98% and 88% recall.

Comparing to the other tools, IDCCD had the third best recall

overall, with NiCad taking the lead. In case of precision,

IDCCD also performed better comparing to others and got

the second best precision 84%. However, NiCad [1] used

LCS algorithm that can only compare two potential clones

at a time. Since each potential clone needs to be compared

with all of the others, making the comparisons using LCS

was very expensive. On the other hand, SourcererCC [3]

and CloneWorks [4] need extra mathematical calculation and

execution time to index sub-block overlapping. In IDCCD,

no extra calculation is needed, since the number of similar

interfaces in a code repository is smaller than the total number

of interfaces, the use of query in the interface index reduces

the number of candidate method block comparison with lower

time complexity comparing to NiCad [1], SourcererCC [3] and

CloneWorks [4]

IV. CONCLUSION

Code clone detection using interface information has never

been performed before. In this paper, an Interface Driven Code

Clone Detection (IDCCD) approach is developed that can de-

tect clones by using interface information (e.g., method name

return and parameter types). After tokenizing method blocks

and indexing its interface information, IDCCD compares those

method blocks that have similar interfaces. Finally a pair of

method blocks are reported as clone satisfying a similarity

threshold. IDCCD gained an acceptable recall and precision.

Comparing the execution time of IDCCD with other tools and

scalability testing are potential future directions of this work.
REFERENCES

[1] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in Proceedings of
the 19th International Conference on Program Comprehension (ICPC).
IEEE, 2011, pp. 219–220.

[2] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[3] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: scaling code clone detection to big-code,” in Proceedings of the
38th International Conference on Software Engineering. ACM, 2016,
pp. 1157–1168.

[4] J. Svajlenko and C. K. Roy, “Fast and flexible large-scale clone detection
with cloneworks,” in Proceedings of the 39th International Conference
on Software Engineering Companion. IEEE Press, 2017, pp. 27–30.

[5] C. K. Roy and J. Svajlenko, “Bigcloneeval: A clone detection tool eval-
uation framework with bigclonebench,” in Proceedings of the Software
Maintenance and Evolution (ICSME). IEEE, 2016, pp. 596–600.

748748748

