
An Exploratory Study on Interface Similarities in
Code Clones

Md Rakib Hossain Misu
Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

Email: bsse0516@iit.du.ac.bd

Abdus Satter
Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

Email: bit0401@iit.du.ac.bd

Kazi Sakib
Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

Email: sakib@iit.du.ac.bd

Abstract—Code cloning is one of the most popular code reusing
techniques where similar pieces of code are replicated within
or between code repositories. Interface similarity is a kind
of replication that refers to the similarity of method names,
return types and parameter types which repeat across the code
repositories. Two methods with similar interfaces are prone to be
cloned if those perform analogous functions either entirely or at
least partially. An exploratory study is performed in this paper,
to explore the relationship and effects of interface similarity in
code clones. It is investigated that interface similarity can be
helpful for code clone detection. First, clone methods are detected
in code repositories. Then, interface information is extracted
from source code and several interface similarities are measured
using that information. The experimental corpus contains three
different types of code repositories with 35, 109 and 24,558
Java projects respectively. The detected clone pairs in three
code repositories are, on average 57,457, 102,745 and 123,576
respectively. Promising results are found as it shows on average
87.91% intra-project and 59.17% inter-project clones contain
similar interfaces (i.e., return types and at least one keyword and
one parameter type are similar). Besides, the average similarity
of interfaces in Type-1, Type-2 and Type-3 clones are 100%,
83.47% and 81.90% respectively. These results prove the strong
relationship between code clones and interface similarities. In
future, it can be useful to design and develop interface driven
clone detection tools.

Keywords-Code Clone, Clone Detection, Exploratory Study

I. INTRODUCTION

Code clones are pairs of code fragments that are identical

to each other and replicated within or between the code

repositories. It occurs when developers reuse code through

copying and pasting, automatic code generation or plagiarism

with or without modifications [1]. Another common replication

that appears in large software repositories is method interface.

It refers the return types, method names and parameter types

of a method that repeats exactly or similarly across the code

repositories.

If two methods contain the similar interfaces, it is very likely

those perform same functionalities either entirely or at least

partially. When those methods contain the same interface and

perform similar functionalities, it indicates that these methods

should be semantic or syntactic code clone to each other [2].

However, there is no evidence of whether such a hypothesis

holds. To verify this to a certain level is very difficult, since

various types of interface similarities can be possible. It is

also challenging task to measure those similarities in different

types of code clones (e.g., intra-project, inter-project, Type-1,

Type-2 and Type-3). If it can be proved that interface similarity

is significantly related to code clone, this can be helpful for

clone detection, tracking and management.

Various clone detection techniques are proposed throughout

the last decade. According to Roy et al. [3] clone detection

techniques, using various representation, includes Textual [4],

AST based [5], Token based [6] and Dependency graph based

[7] etc. Although these tools are focused on clone detection,

the effect and relationship of interfaces in code clones have

never been analyzed. Several code search techniques such as

Keyword Based Code Search (KBCS) [8] and Interface Driven

Code Search (IDCS) [9] provide code searching with method

interface information but never investigated the relationship

between code clones and interfaces. A recent study [2] has

discussed the effect of Interface Redundancy (IR) in code

search but has not clearly explained the effect and impact of

interface similarities in different types of code clones.

To explore the relationship and effects of interfaces

similarity in code clones, an exploratory study is conducted

on three subject systems (e.g., small, medium, and large). The

subject systems contain 35, 109 and 24,558 open source Java

projects crawled from SourgeForg, GitHub, Google Code

etc. First, various types of method clone lists are detected

by using two prominent clone detection tools SourcererCC

[6] and NiCad [4]. After that, interface information (e.g.,

return types, method names, parameter types) is extracted for

each method clone from its source code. For every interface,

keywords and synonyms are also identified by extracting

its method name. Finally, using this extracted information

various types of interface similarities are found by satisfying

similarity conditions. The percentage of how many clones

satisfy each condition is measured. These results are used

for establishing the desired relationship. More specifically,

the aim of this study is to seek the answers of the following

research questions.

RQ1: What does percentage of interface similarities occur
in intra-project and inter-project method clones with various
similarity combinations?

2017 24th Asia-Pacific Software Engineering Conference Workshops

978-1-5386-2649-8/17 $31.00 © 2017 IEEE

DOI 10.1109/APSECW.2017.24

122

2017 24th Asia-Pacific Software Engineering Conference Workshops

978-1-5386-2649-8/17 $31.00 © 2017 IEEE

DOI 10.1109/APSECW.2017.24

126

RQ2: Are the intensities of interface similarity different in
various types of clones and which clone-type(s) have higher
possibilities to be detected by using interface similarity?

RQ3: How does interface similarity relates to code clone
detection? More specifically, how many code clones occur
due to interface similarity?

The experimental results show that 87.91% intra-project

and 59.17% inter-project clones contain similar interfaces.

Similarity of interfaces in Type-1,Type-2 and Type-3 clones

are 100%, 83.47% and 81.90% respectively that infers

interface similarity may have significant relationship with

code clones. In future, it can be beneficial to design a new

lightweight interface driven code clone detector.

The remainder of this paper is structured as follows. Section

II presents background knowledge about the topics essential

to understanding this study, such as code fragments, various

types of clones [1]. Section III describes study design with the

experimental dataset. Study results and discussion on these in

the light of the research questions and the limitation of the

results are represented in Section IV. Threats to validity are

mentioned in Section V. Section VI deals with the existing

works which are strongly relevant to the study. Finally, Section

VII concludes the paper by summarizing the contribution and

possible future direction of this study

II. BACKGROUND

Subject System: Subject system refers to a code repository

with different types of projects. These projects vary from

one another by application domains and the number of files

and Line of Code (LOC). Clone detection is applied on each

project of the subject systems [1].

Code Fragment: It refers to a successive segment of source

code. It is specified by the triple (f, s, e), where f represents

the source file, s represents the line number from where the

method starts on and the line at which it ends is represented

by e [1].

Clone Pair/ Method Clone: Clone pair is a pair of code

fragments that are similar or identical to each other. However,

if two methods are cloned, it is specified as method clone.

In this study, clone pair is considered as method clone. It

is expressed by the triple (m1, m2, t), where m1 and m2

represent the similar methods, and the clone type is specified

by t [1].

Intra-Project Clone: It refers to a clone pair where the

methods are found in the same project within a subject system.

Inter-Project Clone: It occurs when a clone pair contains

methods from two different projects within a subject system.

Type-1 Clone: Syntactically identical methods, except for

differences in white-space, layout, and comments [1].

Type-2 Clone: Syntactically identical methods, except for

differences in white-space, layout, comments, identifier names

and literal values [1].

Type-3 Clone: Syntactically identical methods which differ

at the statement level. The fragments have statements added,

modified and/or removed with respect to each other, in addition

to Type-1 and Type-2 clone differences [1].

III. STUDY DESIGN

The aim of this study is to investigate the relationship,

impact and effect of method interfaces in code clones. To

do so, three types of subject systems are chosen (e.g., Small,
Medium and Large) as the experimental dataset. Next, two

accurate clone detection tools SourcererCC [6] and NiCad [4]

are used to identify all the clones present in each type of

subject system. As the granularity of clone detection was set

to method level, these tools provide a list of method clones.

For each clone, interface information are extracted from its

source code for further statistical analysis to seek answers to

the research questions mentioned in Section I. An overview

of the study design is depicted in Figure 1.

A. Experimental Dataset Selection

Based on the number of projects and selection processes,

experimental dataset of this study are classified as Small,
Medium and Large subject systems.

1) Small Subject System (SSS): 35 open source Apache Java

projects are selected as SSS. These projects are varied based

on their size and functionalities including natural language

processing libraries, network and database systems, etc. These

projects are also used in several code clone studies [6]. A

detailed description of these 35 projects can be found in this

link1.

2) Medium Subject System (MSS): SF100 [10] is a statisti-

cally sound test data generation benchmark containing 100

open source Java projects. Later it has been extended by

adding 10 most downloaded projects from SourceForge2 called

SF110 [11]. Here SF110 is used as MSS. These benchmark

SF100 and SF110 were previously used in several studies [12],

[9]. However, a project namely Liferay Portal is removed from

SF110 because it contains 8,335 Java files and 1,552,597 LOC

that create extreme value problem for statistical analysis.

3) Large Subject System (LSS): IJaDataset-2.03, a large

Java source code repository, covers above 24k projects crawled

from GitHub, SourceForge etc. While developing a clone de-

tection benchmark BigCloneBench [13] and framework called

BigCloneEval, Jeffrey et al [14] modified the IJaDataset-2.0.

The modified version of IJaDataset-2.0 is used as LSS. TABLE

I represents the summary of Small, Medium and Large subject

systems.

B. Code Clone Detection

Two popular token-based clone detection tools SourcererCC

[6] and NiCad [4] are used in this study because these tools

achieve high recall and precision, in comparison to any other

existing tools [2]. Since these tools give high recall with

1https://projects.apache.org/
2http://sourceforge.net
3IJaDataset 2.0, http://secold.org/ projects/seclone

123127

Figure 1. Overview of Study Design

TABLE I. SUMMARY OF SUBJECT SYSTEMS

Features
Subject System

Small Medium Large
Name Apache SF110 IJaDataset 2.0

Java Projects 35 109 24,558
Java Files 13,122 19,492 2,078,126

LOC 1,711,237 3,630,723 300,000,000

TABLE II. SUMMARY OF DETECTED CLONES

Clone Type Small Medium Large Total
Intra-Project 55,105 82,403 47,852 185,360
Inter-Project 2,352 20,342 17,265 39959

Type-1 9,099 4,826 47,567 61,492
Type-2 26,737 22,996 4,233 53,966
Type-3 37,185 29,875 6,659 73,717
Total 130,478 160,440 123,576 414,494

minimum 6 lines method level granularity and 80% similarity

threshold, the same configuration is set for this study. Sourcer-

erCC [6] has been used for detecting intra-project and inter-

project method clone detection. On the other hand, various

types (e.g., Type-1, Type-2, and Type-3) of method clones

are identified by NiCad [4]. Now, for each subject system,

accumulating the result of the above mentioned steps, three

types of clone lists are found. The intra-project method clones

exist in the subject systems. All the inter-project method clones

which are drawn from all projects of each subject system

and different types of method clones (e.g; Type-1, Type-2 and

Type-3) are present in each subject system. A list of detected

clones is shown in TABLE II.

C. Interface Extraction

For every method clone, the source code of those meth-

ods are collected from their respective projects. After that,

the source codes of each method are transformed into AST

representation by using Eclipse’s ASTParser4. Next, interface

information such as return type, method name and parameter

types are extracted by traversing AST nodes. In a method

clone, each method name may contain single or multiple key-

words that describe its functionality. These keywords are also

extracted by following Java CamelCase5 naming convention.

Then keywords are transformed into its root form by removing

stop words. It is performed by using a standard stop-word list6.

Next, stemming is performed on those words. Stemming can

be done based on various algorithms and tools. Here, Apache
Lucene7 Porter Stemmer is used. After that, synonyms are

identified by using Java WordNet Library [15]. Finally, for

each method clone pair return type, parameter types, keywords

and a set of synonyms are retrieved.

Various types of interface similarity conditions are con-

structed with the combination of interface information. For

example, one of the conditions is two interfaces are similar

if their return types are similar. In total 11 types of inter-

face similarity conditions are considered. Each conditions is

represented by a unique identifier such as S1 represents the

condition of return type similarity of two methods in a method

clone. A complete list of 11 types of similarity conditions is

explained in TABLE III.

D. Interface Similarity Measurement

The percentage of how many clones satisfy each similarity

condition is calculated since these helps to normalize the

4https://github.com/eclipse/eclipse.jdt.core
5https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
6http://www.ranks.nl/stopwords
7https://lucene.apache.org/core/

124128

TABLE III. LIST OF INTERFACE SIMILARITY CONDITIONS

Identifier Similarity Conditions
S1 Return types are similar
S2 Number and types of parameters are similar
S3 At least one parameter is similar
S4 Return types and parameter types are similar
S5 Return types and at least one parameter type are similar
S6 At least one keyword extracted from method name is similar
S7 Keywords extracted from method name are similar
S8 At least one synonym of extracted keyword is similar
S9 At least one synonym from all keywords are similar
S10 Return types and all keywords and parameters are similar
S11 Return and parameter types, at least one keyword are similar

results value. For example, in SSS for a single project, detected

clone lists (e.g., intra-project, Type-1, Type-2 and Type-3

clone list) are taken. Then, for each clone list, how many

clones satisfy each similarity condition are counted and obtain

the percentage for each type of similarity condition for that

project. After that, by averaging all project’s percentage, the

overall mean is calculated for the subject system. For example,

from TABLE IV it is observed that on average 91.73% intra-

project clone satisfy S1 similarity condition within SSS. Sim-

ilarly, following the same process, for each type of similarity

condition, percentage and overall mean are calculated in MSS

and LSS. However, it is noted that the number and types of

parameters received by a method are more important than the

order in which those have appeared. So, while satisfying the

similarity conditions associated to parameters, the ordering of

those parameters are ignored. Here, interface ��� �����	����
�
���� ���� and ��� ��������� ���� 	����
�are considered to be

similar based on the number of parameters and types ignoring

the ordering of those parameters.

IV. STUDY RESULTS

In this section, the experimental result analysis of code

clone and its relationship with interfaces are presented. The

results are found by satisfying 11 similarity conditions (e.g.,

S1,S2...,S11). So, the answers of those research questions

(mentioned in Section I) are drawn based on the fulfilling of

the similarity conditions.

RQ1: What does percentage of interface similarities occur
in intra-project and inter-project method clones with various
similarity combinations?

To answer this question, the results are presented with

respect to intra-project and inter-project method clones. The

numbers of intra-project clones found in SSS, MSS and LSS

are 55,105 82,403 and 47,852 respectively that amounts in

total 185,360 method clones. In the SSS, 35 projects contain

a considerable number of clones. However, in MSS and LSS

only 96 and 1,841 projects include method clones. The main

reason for this is, most of the method code fragments do

not satisfy 80% similarity threshold and minimum 6 lines

configuration parameters. On the other hand, the number of

detected inter-project clones in SSS, MSS and LSS are 2,352,

20,342 and 17,265 respectively. It amounts in total 39,959

inter-project method clones. The percentage of interface simi-

larities in intra-project and inter-project clones in each subject

system is shown in TABLE IV and TABLE V.

TABLE IV. INTERFACE SIMILARITIES IN INTRA-PROJECT CLONES

Conditions
Subject System

Average(%)
Small Medium Large

S1 87.14% 88.78% 99.28% 91.73
S2 84.92% 87.97% 98.68% 90.52
S3 92.34% 91.55% 98.90% 94.26
S4 74.12% 78.34% 98.14% 83.53
S5 80.85% 81% 98.28% 86.71
S6 84.45% 80.44% 98.84% 87.91
S7 70.22% 60.84% 97.37% 76.14
S8 88.39% 85.45% 98.96% 90.93
S9 65.06% 54.47% 97.13% 72.22
S10 70.22% 60.84% 97.37% 76.14
S11 84.45% 80.44% 98.84% 87.91

TABLE V. INTERFACE SIMILARITIES IN INTER-PROJECT CLONES

Conditions
Subject System

Average(%)
Small Medium Large

S1 97.49% 76.05% 94.06% 89.20
S2 92.60% 99.90% 91.58% 94.69
S3 94.22% 99.80% 91.37% 95.13
S4 91.20% 76.01% 86.88% 84.69
S5 92.73% 76.02% 87.58% 85.44
S6 59.52% 29.07% 88.93% 59.17
S7 53.19% 38.21% 68.13% 53.18
S8 88.90% 83.80% 87.01% 86.57
S9 51.91% 32.43% 63.35% 49.23
S10 53.19% 38.21% 68.13% 53.18
S11 59.52% 29.07% 88.93% 59.17

It is observed that the average rate of fulfilling each type

of similarity condition is almost consistent in all subject

systems. It is an indication that interface similarity is related to

method clone. Especially, on average above 85% of the clones

satisfy only return type and parameter types based similarity

conditions such as S1, S2, S3, S4 and S5. The is besause

if two methods contain similar return types and parameters,

it means those take similar input and provide similar output.

Most of the time these methods are considered to be clones as

those perform similar functionality omitting the keyword those

contain in method names [16]. It infers that approximately

above 85% intra-project and inter-project method clones con-

tain similar return type and parameter types. As keywords have

less significant influences on method functionality comparing

to its return type and parameter types, only 76.14% and

87.91% intra-project clones satisfy conditions S10 and S11.

In comparing to intra-project clones, similarity conditions

S10 and S11 are not satisfied by a significant number of

inter-project clones. Since the usage of inappropriate naming

convention, improper keywords and generic type prevents

method clones satisfying similarity conditions S10 and S11.

Only 53.18% and 59.17% intra-project clones meet S10 and

S11 conditions respectively that infers 59.17% inter-project

clone contains similar keywords from method names, return

type and parameter types.

From TABLE IV and TABLE V, it is observed that con-

ditions associated to keyword and synonym such as S7, S8,

125129

S9, S10, and S11 are not satisfied by the significant number

of clones. Besides, conditions associated to return type and

parameter types (e.g., S1, S2, S3 and S4), are not satisfied

by almost 15-20% clones. To find the reasons, the source

code of those clones are manually inspected. The first rea-

son is usage of inappropriate naming convention. In some

clones, one of the method names is not written by following

CamelCase naming convention. Some clones contain Pascal-

Case and Snake case or underscore case naming convention.

While splitting method name by following CamelCase nam-

ing convention, keywords cannot be extracted. As a result,

clones are failed to fulfill these (e.g., S7, S8, S9 and S11)

conditions. Another reason is usage of improper keywords in

method names. For example, in a method clone, two inter-

faces are List<Integer> sort(List<Integer>)
and List<Integer> x(List<Integer>). In the sec-

ond interface, developers use improper term in the method

name that does not describe its functionality. So, correct

keywords cannot be extracted from its method name that

prevents those clones satisfying conditions (e.g., S7, S8, S9,

S10 and S11) having similar return and parameter types.

The second reason is type mismatch problem. In some

clones, the return type and parameter types are not exactly

the same, but based on programming knowledge, those

are considered to be similar. For example, in a method

clone, two interfaces are int[] bubbleSort(int[])
and double[] bubbleSort(double[]). These two

methods perform same functionality on two different

type of data (e.g., int and double). These methods

also contain the similar syntactic implementation in the

method body. However, in this study, these interfaces

are considered to be dissimilar since return types and

parameter types are not exactly matched. Type mismatch

problems have also occurred in some clones for the usages

of generic return type and parameter type. For example

type mismatch occurs between interface <T extends
Number> void copyList (List<T>dest,
List<T> src) and List<Integer> copyList
(List<Integer>src, List<Integer>dest). As

a result, a significant number of clones (both intra-project

and inter-project clones) does not satisfy those similarity

conditions adequately.

RQ2: Are the intensities of interface similarity different in
various types of clones and which clone-type(s) have higher
possibilities to be detected by using interface similarity?

This research question is answered with respect to Type-

1, Type-2 and Type-3 method clones. The total numbers of

detected Type-1, Type-2 and Type-3 method clones in three

subject systems are 61,492, 53,966 and 73,717 respectively.

TABLE VI, TABLE VII and TABLE VIII represent the sum-

mary of satisfying interface similarities by Type-1, Type-2 and

Type-3 clones respectively. From TABLE VI, it is observed

that conditions (i.e., S1, S2,...,S11) satisfied by Type-1 clones

are 100%. It is consistent with Type-1 method clone definition.

TABLE VI. INTERFACE SIMILARITIES IN TYPE-1 CLONES

Conditions
Subject System

Average(%)
Small Medium Large

S1 100% 100% 100% 100
S2 100% 100% 100% 100
S3 100% 100% 100% 100
S4 100% 100% 100% 100
S5 100% 100% 100% 100
S6 100% 100% 100% 100
S7 100% 100% 100% 100
S8 100% 100% 100% 100
S9 99.94% 100% 100% 99.98
S10 100% 100% 100% 100
S11 100% 100% 100% 100

TABLE VII. INTERFACE SIMILARITIES IN TYPE-2 CLONES

Conditions
Subject System

Average(%)
Small Medium Large

S1 83.26% 81.81% 98.72% 87.93
S2 83.98% 81.91% 97.68% 87.86
S3 87.30% 87.34% 98.02% 90.88
S4 69.39% 65.23% 96.55% 77.06
S5 71.79% 69.46% 96.88% 79.38
S6 81.39% 80.40% 88.61% 83.47
S7 43.47% 49.49% 19.23% 37.40
S8 81.57% 76.68% 94.05% 84.10
S9 37.89% 40.86% 17.06% 31.94
S10 43.47% 49.49% 19.23% 37.40
S11 81.39% 80.40% 88.61% 83.47

Since syntactical modifications do not occur in Type-1 method

clone, interfaces of those clones always remain similar.

From TABLE VII and TABLE VIII, it is found that above

80% Type-2 and Type-3 method clones satisfy return type

and parameter types based similarity conditions (e.g., S1, S2,

S3 and S4). However, a significant number of Type-2 and

Type-3 clones satisfy conditions S10 and S11. On average

83.47% Type-2 and 81.90% Type-3 clones fulfill S10 and S11

conditions respectively. As renaming of identifiers and literal

values occur in Type-2 clones and some addition or deletion

of statement occur in Type-3 method clones, some method

clones fail to fulfill some similarity conditions. For example,

in a Type-2 method clone interfaces are List<String>
getContent(File) and ArrayList<String> get-
Content(File) respectively. However, by following Java

polymorphism features, these two methods contain similar

interfaces, but here these are considered dissimilar. This is

because that exact matching is performed to measure the return

type similarity. Besides, inappropriate naming convention, type

mismatch problem and usage of generic type prevent on

average 20% Type-2 and Type-3 clones satisfying similarity

conditions. It infers that approximately 83.47% Type-2 and

81.90% Type-3 clones contain similar keywords from method

name, return and parameter types. So, the intensity of interface

similarity is higher in Type-1 compared to Type-2 and Type-3

clones.

From the experimental result, it has been analyzed that all

types of method clones can be detected using interface simi-

larities. There is 100% probability that Type-1 method clones

can be identified by performing exact interface information

126130

TABLE VIII. INTERFACE SIMILARITIES IN TYPE-3 CLONES

Conditions
Subject System

Average(%)
Small Medium Large

S1 84.72% 85.68% 91.44% 87.28
S2 79.07% 83.13% 87.90% 83.37
S3 85.12% 85.93% 88.21% 86.42
S4 66.84% 71.75% 81.09% 73.23
S5 72.23% 73.84% 81.95% 76.01
S6 80.94% 76.87% 87.90% 81.90
S7 60.29% 58.39% 77.51% 65.40
S8 82.40% 80.32% 84.35% 82.36
S9 55.41% 51.61% 71.75% 59.59
S10 60.29% 58.39% 77.51% 65.40
S11 80.94% 76.87% 87.90% 81.90

matching. Above 80% Type-2 and Type-3 method clones can

be detected by interface similarities since 83.47% Type-2 and

81.90% Type-3 clones contain similar interfaces. However,

while detecting Type-2 and Type-3 clones, more than 80%

clone can be detected by incorporating to the inappropriate

naming convention, type mismatch problem and usage of the

generic types.

RQ3: How does interface similarity relates to code clone
detection? More specifically, how many code clones occur
due to interface similarity?

In this question, the relationship between classical code

clone and interface similarity has been investigated. The main

question is how much of clones occurs due to interface simi-

larity. In this case, only the intra-project clones are considered

because these are the method clones that are implemented by

the developers of each project. Besides, for interface similarity

measurement, only those clones are considered that satisfy

similarity condition S11. This is because it ensures both

methods in the each clone pair contain same return types,

at least one keyword from method name and one parameter

type. TABLE IX represents the number of intra-project method

clones in each subject system. It also provides both the

numbers of clones that satisfy and do not satisfy S11 similarity

condition. It is found that out of 1,85,360 intra-project method

clones only 25,241 clones do not contain similar interfaces

that refer only 13.62% clones do not satisfy S11 similarity

condition. Because of the inappropriate naming convention,

type mismatch and generic type matching problem, these

clones fail to satisfy similarity condition that is discussed

while answering research questions RQ1 and RQ2. On the

other hand, it is observed that in total 1,60,119 method clones

contain similar interface. It infers that 86.38% clones occur

due to interface similarity. It is a very important result since

it is the evidence that interface similarity may have significant

relationship to classical method clone detection.

V. THREATS TO VALIDITY

The number of detected clones may increase or decrease

with the variation of detection parameters used by Sourcer-

erCC [6] and NiCad [4]. In an exhaustive study, Wang

et al. [17] observed that clone detection tools are affected

by confounding configuration parameter choice problem. So,

TABLE IX. INTRA-PROJECT CLONES SATISFYING CONDITION S11

Clones
Subject System
Small Medium Large Total

Intra Project 55,105 82,403 47,852 1,85,360
Satisfy S11 46,537 66,285 47,297 1,60,119
Percentage (%) 84.45 80.44 98.84 86.38%
Do not Satisfy S11 8,568 16,118 555 25,241
Percentage (%) 15.55 19.56 1.16 13.62%

SourcererCC [6] and NiCad [4] are also affected by this

problem. However, here standard configuration settings (e.g.,

80% similarity with minimum 6 lines) are used by Sourcer-

erCC [6] and NiCad [4] that prevents both tools getting

false positive clones and ignoring the getter, setter, and

abstract methods of Java class attributes.

In this study, NiCad has been used for detecting Type-1,

Type-2 and Type-3 clones. So, any other clone detection tools

can provide different experimental results. Svajlenko et al. [18]

has shown that for detecting three types of clone, NiCad is

very accurate in comparison with other clone detection tools.

Similarly, in some previous clone detection studies [6], it is

observed that SourcererCC is also very accurate for detecting

intra-project and inter-project clones in large code repositories.

So, the clones detected by SourcererCC and NicCad have

significant impact on the results of this study.

The experimental results may vary if the subject systems

are changed. However, subject systems used in this experiment

are enough to take a complete decision on the relationship

and effects of interface similarities in code clones. The

reason is that the candidate systems differs in terms of

the application domains, size, revision and the presences

of various types clones. These subject systems contain 35,

109 and 24,558 open source Java Projects extracted from

SourceForge, Git-Hub, Google Code etc. So, for instance,

these projects can be representative of a small, medium and

large company’s local repositories. These are also used in

many code clone studies [6]. The experimental results implied

from this subject system should be statistically sound.

Reproducibility: All the necessary artifacts of this study

are publicly available8. For generating the statistical results to

verify the claims of this study, these artifacts include source

code of subject systems, all types of detected clones e.g.,

intra-project, inter-project, Type-1, Type-2 ad Type-3), raw

data generated in the study, and the source code of analyzing

interface similarity9.

VI. RELATED WORK

The study of establishing the relationship between method

interfaces and code clones are closely related with various

areas (e.g., Clone Detection, Code Search etc.) of software

engineering research that have similar concepts. A brief de-

scription of those areas is mentioned below.

8https://github.com/MisuBeImp/APSEC-2017-Paper-Artifacts
9https://github.com/MisuBeImp/CloneInterfaceSimilarityDetector

127131

A. Clone Detection

Numbers of clone detection approaches have been pro-

posed in the literature. Based on algorithm and source code

representation, these approaches differ from each other. Roy

et al. have performed a comprehensive survey focusing the

strength and limitation of various clone detection approaches

[3]. According to that clone detection techniques can be

categorized into various types such String-based, Token-based,

Tree-based techniques [3]. String-based techniques use the

source code with little or no transformation and use string

matching algorithms. For example, Marcus et al. used the

Latent Semantic Indexing (LSI) algorithm for detecting high-

level concept clones [19]. Similarly, Cordy et al. also applied

the Longest Common Subsequence (LCS) algorithm in their

tool called NiCard [4] for an efficient text line comparison to

find nearly miss matched clones. Since, string matching algo-

rithms do not work faster for larger dataset, these techniques

face scalability issues.

Tree-based techniques detect clones by finding similar sub-

trees. The source code are parsed into its AST representation.

Various graph or tree matching algorithms are used to detect

similar subtrees. Jiang et al. proposed a novel approach for

matching similar trees in their tool Deckard [5]. They com-

puted a certain characteristic vector from the AST and used

Locality Sensitive Hashing (LSH) to cluster similar vectors

based on Euclidean distance metric for detecting clones.

However, AST based techniques face scalability issues as parse

trees contain a lot of information consuming high memory.

Token based techniques transform the source code into a

sequence of the lexical token with a predefined granularity

level. Next, the comparison is done between the tokens. The

transformation of the token is done by using the lexical ana-

lyzer to parse the source code, and rule-based transformation

is applied to generate a stream of the token. Sajnani et al

has introduced a token based approach called SourcererCC [6]

using sub block overlapping heuristic and token positioning fil-

tering for efficient comparison [6]. However, these techniques

only concerned in clone detection neither focused on interface

similarity nor investigated the effects of interface similarities

in code clones.

B. Code Search

Code search has become popular with the increasing move-

ment of open source code. Existing code search techniques

includes Keyword Based Code Search (KBCS) [8], Semantic

Based Code Search (SBCS) [20], and Test Driven Code Search

(TDCS) [21]. Moreover, to extend code search techniques,

researchers have proposed a sophisticated approach called

Interface Driven Code Search (IDCS) [22]. It allows users to

search code in code libraries, by using interface information.

IDCS first crawls all the methods from the code libraries

and extracts interfaces for indexing similar methods. It can

be performed by using existing code search tools such as

Sourcerer [23]. However, while indexing, IDCS cannot select

proper terms for similar codes with the analogous functional-

ity. Recently a study [16] has improved IDCS performance by

indexing similar methods under appropriate terms. The study

has shown that if two methods contain similar return types

and parameters, most of the time those perform similar func-

tionality omitting the keyword they contain in method names

[24]. The findings also support this interface similarity study,

as the result analysis shows that average interface similarity of

method clones based on return type and parameters are better

than those similarities which are based on keywords (i.g,.root

words and synonyms). However, IDCS differs from interface

similarity study since it only finds relevant code based on

interface not the method clones.

C. Interface Redundancy

Interface Redundancy (IR) represents the repetition of whole

method interface (e.g.,return type, method name, and param-

eters types) across the software corpus. Paula et al. have

first introduced it in an exploratory study [2]. Their study is

much focused on exploring the impacts and effects of IR in

code search. They extracted 380,000 methods from a code

corpus (i.g.,a medium subject system SF100) in a relational

database by Sourcerer [23]. To identify redundant interfaces,

they have performed IDCS on the databse in two step. First,

IDCS is performed without query expansion. Then, again it

is performed with Automatic Query Expansion (AQE) [25]

to overcome the keyword related vocabulary mismatch and

different thesauri [12] (e.g., types of lists contained within the

Java API) problem. The results has shown that 80% project of

the targeted repositories contain redundant interfaces. Besides,

it is found that the knowledge of redundant interface in

code repositories improves the performance of code search

especially in IDCS. Additionally, it is observed that IR has

diverged from traditional code cloning since in their study

only 0.002% IR is related to method clones [2].

VII. CONCLUSION

The relationship between method clones and method in-

terfaces have never been studied before. In this study, an

exploratory study has been performed to investigate the rela-

tionship, impact and effects of interfaces in code clones. In the

first step, three types of subject systems (Small, Medium and

Large) are selected as the experimental dataset that contain 35,

109 and 24,558 open source Java projects respectively. Next,

two token based clone detection tools such as SourcererCC

[6] and NiCad [4] are used to identify all types of clones

(e.g., intra-project, inter-project, Type-1, Type-2 ad Type-3)

within the subject systems. The average number of clones

found are 130,478, 160,440 and 123,576 respectively. After

that, interface information (e.g return type, method name and

parameter types) of those clones are extracted from the source

code. Finally, interfaces similarity is measured in method

clones by satisfying similarity conditions.

The experimental result analysis shows that on average

87.91% intra-project clones and 59.17% inter-project clones

contain similar interface (i.e., return types and at least one

root word and at least one parameter types are similar).

Besides, 100% Type-1, 83.47% Type-2 and 81.90% Type-3

128132

clone contain similar interfaces. However, use of inappropriate

naming convention, generic type and type mismatch problem

prevent some clones satisfying interface similarities which

ushers new research directions. Besides, the findings help to

design new interface driven code clone detection tool.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[2] A. C. de Paula, E. Guerra, C. V. Lopes, H. Sajnani, and O. A. L. Lemos,
“An exploratory study of interface redundancy in code repositories,”
in Source Code Analysis and Manipulation (SCAM), 2016 IEEE 16th
International Working Conference on. IEEE, 2016, pp. 107–116.

[3] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[4] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on.
IEEE, 2011, pp. 219–220.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 1157–1168.

[7] R. Komondoor and S. Horwitz, “Effective, automatic procedure ex-
traction,” in Program Comprehension, 2003. 11th IEEE International
Workshop on. IEEE, 2003, pp. 33–42.

[8] W. B. Frakes and B. A. Nejmeh, “Software reuse through information
retrieval,” in ACM SIGIR Forum, vol. 21, no. 1-2. ACM, 1986, pp.
30–36.

[9] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes, “Can the
use of types and query expansion help improve large-scale code search?”
in Source Code Analysis and Manipulation (SCAM), 2015 IEEE 15th
International Working Conference on. IEEE, 2015, pp. 41–50.

[10] G. Fraser and A. Arcuri, “Sound empirical evidence in software testing,”
in Software Engineering (ICSE), 2012 34th International Conference on.
IEEE, 2012, pp. 178–188.

[11] ——, “A large-scale evaluation of automated unit test generation using
evosuite,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 24, no. 2, p. 8, 2014.

[12] O. A. Lemos, A. C. de Paula, F. C. Zanichelli, and C. V. Lopes,
“Thesaurus-based automatic query expansion for interface-driven code
search,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 212–221.

[13] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 476–480.

[14] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool
evaluation framework with bigclonebench,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
2016, pp. 596–600.

[15] M. A. Finlayson, “Java libraries for accessing the princeton wordnet:
Comparison and evaluation,” in Proceedings of the 7th Global Wordnet
Conference, Tartu, Estonia, vol. 137, 2014.

[16] A. Satter and K. Sakib, “Improving recall in code search by indexing
similar codes under proper terms.” in QuASoQ/TDA@ APSEC, 2016,
pp. 35–42.

[17] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: a rigorous approach to clone evaluation,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, 2013, pp. 455–465.

[18] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in Software Maintenance and Evolution (ICSME), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 321–330.

[19] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” in Automated Software Engineering, 2001.(ASE 2001).
Proceedings. 16th Annual International Conference on. IEEE, 2001,
pp. 107–114.

[20] S. P. Reiss, “Semantics-based code search,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 243–253.

[21] O. A. Lazzarini Lemos, S. K. Bajracharya, and J. Ossher, “Codegenie::
a tool for test-driven source code search,” in Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems
and applications companion. ACM, 2007, pp. 917–918.

[22] A. M. Zaremski and J. M. Wing, “Signature matching: a tool for using
software libraries,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 4, no. 2, pp. 146–170, 1995.

[23] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming, vol. 79, pp. 241–259, 2014.

[24] A. Satter and K. Sakib, “A similarity-based method retrieval technique to
improve effectiveness in code search,” in Companion to the first Interna-
tional Conference on the Art, Science and Engineering of Programming.
ACM, 2017, p. 39.

[25] C. Carpineto and G. Romano, “A survey of automatic query expansion in
information retrieval,” ACM Computing Surveys (CSUR), vol. 44, no. 1,
p. 1, 2012.

129133

