
A Search Log Mining based Query Expansion
Technique to Improve Effectiveness in Code Search

Abdus Satter∗ and Kazi Sakib†
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: ∗bit0401@iit.du.ac.bd, †sakib@iit.du.ac.bd

Abstract—The effectiveness of a code search engine is reduced
when query terms do not represent the information needs
properly or terms are ambiguous. As a result, many irrelevant
code snippets and software artifacts are retrieved that hinder the
developers reusing existing source code. In this paper, a technique
named QExpandator is proposed that improves the effectiveness
in code search by expanding query terms with search topic and
content specific keywords. It extracts user queries and clicked
code fragments from the previous search history and represents
each query in a vector document. Jaccard similarity score is
calculated for each term in the document vector and a posting list
of conceptually similar words is created based on the similarity
score. Finally, to expand a user query, top scored terms are
retrieved for each query term and appended to the original query.
To evaluate the technique, 22 user queries were selected and
an existing approach was employed. QExpandator shows 48.6%
more effectiveness in terms of precision at 10 (P@10) than the
existing one. Moreover, for each query, it increases P@10 from
60.9% to 90% on an average due to using search topic and
context specific keywords.

Index Terms—code search, code reuse, term mismatch

I. INTRODUCTION

The effectiveness of a code search engine indicated by
precision and recall [1], depends on the accuracy in repre-
senting user needs into query terms [2]. Proper transformation
of information needs into query terms helps to retrieve more
relevant codes. Most of the code search engines provide a
single text box to obtain a set of keywords that maps user
query [3]. These keywords are matched against the collection
index to retrieve relevant code snippets or software artifacts.
However, if user provided keywords do not express the desired
search topic or context properly, search engines fail to retrieve
many relevant codes [4]. Sometimes, many irrelevant code
fragments are shown as top ranked search results by search
engines due to using irrelevant keywords as query terms. This
problem is commonly known as vocabulary mismatch problem
in Information Retrieval (IR) [2] and it is also relevant to code
search as keywords are used to define user query [5].

In order to increase retrieval effectiveness, vocabulary mis-
match problem needs to be solved by expanding query terms.
For the expansion, query terms are required to be augmented
by new keywords that represent the information needs prop-
erly. However, selecting appropriate terms based on the user
query is a challenging task. The reason is that user query
comprises few keywords and most of these are ambiguous
[6]. Another challenge is to match user query with index terms
because the indexers and the users do not use the same terms

to represent the same code [7]. Even, the probability that two
users will use the same query terms to express a particular
information needs is 10-15% [7]. Selecting relevant keywords
for query expansion requires understanding user intent and
searching context. For example, a user provides ”log” as
query and expects example codes of logging frameworks that
record execution traces of a program. For the same query term
”log”, another user may expect libraries or sample codes that
implement different mathematical log functions. Due to this
natural language ambiguity, it is also a research challenge to
understand the actual intent of a query [8].

Concerned with the increasing demand of reusable software
components, researchers have proposed various techniques to
improve the effectiveness of code search engines. In order
to find example codes about the usage of Application Pro-
gramming Interface (API), Holmes et al. proposed a tech-
nique named Strathcona [9]. It takes keywords from user
denoting API name and provides sample code fragments that
use the API. However, it cannot retrieve more relevant code
fragments if query terms mismatch with API name, because
exact matching is performed for code retrieval. Sourcerer
[10] provides infrastructure for large code search. It employs
traditional IR centric approach to index source codes and query
over the index. Although it retrieves software components at
different granular level, many irrelevant codes are fetched due
to not considering search topic and context. According to the
searching behavior, developers like to use keywords as query
rather than using concrete object type. CodeGenie employs
test case to get semantics from source code and retrieve
methods from code base [12]. Although it improves precision
in code search, many relevant codes are missed due to using
keyword matching without understanding search intent. Lemos
et. al. first identified the vocabulary mismatch problem in
code search and proposed a thesaurus based query expansion
technique to solve the problem [5]. The technique expands a
term with its synonyms using WordNet. However, synonyms
do not express information needs appropriately when query
terms are ambiguous.

In this paper, a technique named QExpandator is proposed
to improve the effectiveness in code search. In order to expand
query with context and topic specific keywords, the technique
adopts user query logs containing the query terms and the
code fragments or software artifacts that are clicked. Each user
query in the query logs is converted into document vector
by the technique. A term-term matrix is constructed where

semantically and contextually similar terms are stored in the
same row of the matrix. Here, similarity score is calculated by
applying Jaccard Similarity formula on term co-occurrences in
the same query. At last, for a given user query. top k relevant
terms are obtained from the matrix to expand each term. The
expanded query is then submitted in the search engine to
retrieve relevant code snippets or artifacts.

In order to evaluate the proposed technique, a software
tool was developed. Besides, an existing technique named
Thesaurus Based Automaic Query Expansion (TBAQE) [5]
was also implemented for comparative result analysis. As
QExpandator requires query log history, one year search logs
were obtained from [13]. 22 real life user queries were selected
from Koders (a popular code search engine) and 15 subjects
were employed to justify the relevance of the results. Usually,
developers use Google to retrieve software artifacts and source
code snippets. So, all the queries were executed in Google.
To evaluate the effectiveness of QExpandator, a commonly
used metric named Precision at 10 (P@10) was employed.
While analyzing the results, it is found that TBAQE reduces
P@10 by 19.6% due to using synonyms of query terms that
do not express the search intent properly. On the other hand,
QExpandator increases P@10 from 60.9% to 90% by adding
context and topic specific keywords.

II. RELATED WORKS

Since the amount of open source codes and software ar-
tifacts is increasing rapidly day by day, current development
approach suggests reusing existing codes rather than develop-
ing the same again. Even, it is said that a significant amount
of codes that is written today has already been developed
previously. In order to increase reusability, software developers
use code search engines to retrieve relevant code fragments and
use these as reusable components. Different techniques have
been proposed in the literature to improve the effectiveness of
these engines. Some significant works are discussed as follows.

A technique named Strathcona assists the developers to
understand the usage of an API by retrieving example code
snippets [9]. The technique indexes source code fragments
based on the API names and takes a set of keywords that rep-
resent user query. These keywords are matched with the API
names to retrieve relevant example code fragments. However,
if query terms mismatch with the API names, the technique
cannot retrieve more relevant code fragments because exact
matching is performed for code retrieval.

In order to support infrastructure for large scale code search,
a technique named Sourcerer is found in the literature [10].
It constructs index of source codes in different granular level
such as method, class, package, etc. and search results are
retrieved based on the user specified level. Here, traditional
IR centric approach is employed to construct index and query
over the index but many relevant codes are missed due to
not considering search topic and context. As a result, the
effectiveness of the technique is reduced.

Lemos et. al. first identified the vocabulary mismatch prob-
lem in code search and showed the impact of this in reducing

effectiveness of code search engines [5]. A technique was
proposed to solve this problem which adopted WordNet for
automatic query expansion. The expansion was carried out by
adding synonyms of each query term and all these synonyms
are joined by boolean OR operation with the corresponding
query term. The expanded query is submitted to retrieve
relevant code fragments. However, the technique may retrieve
many irrelevant codes if query terms are ambiguous. The rea-
son is that synonyms of these terms do not resolve ambiguity
by expressing the information needs appropriately.

Reusing existing source codes is a proven approach in the
literature for faster and cost effective software development.
So, code search engines need to be effective enough to retrieve
reusable relevant code fragments that best meet user needs.
Various techniques have been found in the literature to improve
the effectiveness in code search. However, these techniques
suffer from vocabulary mismatch problem that reduces the
effectiveness of the code search engines. Although thesaurus
based query expansion technique tries to resolve the problem,
it does not work well when query terms are ambiguous.
So, expanding user query with proper terms to represent
information needs appropriately and improve the effectiveness
in code search is still an open research issue.

III. PROPOSED TECHNIQUE

In order to improve the effectiveness of code search engines,
a technique named QExpandator is proposed that expands
query terms by mining query logs. The technique constructs a
dictionary of conceptually related words by extracting query
terms from previous history and ranking based on their co-
occurrences. Next, user query is expanded by adding top
ranked terms from the dictionary to each query term. The
technique comprises three steps which are Data Preprocessing,
Term-Term Matrix Construction, and Query Reformulation.
Each step is explained in the following subsections.

A. Data Preprocessing

In this step, user query logs are processed to construct a col-
lection of conceptually similar words that acts as data source
for query expansion. QExpandator obtains query logs from
historical repository and converts each query into document
(i.e. collection of terms). Each keyword in the query is checked
whether it appears in the retrieved codes that are clicked or
downloaded against the query. Keywords that appears at least
once are considered relevant, and document is constructed by
tokenizing and stemming these keywords.

In Algorithm 1, a complex data type named QDoc is defined
which has two fields (documents and query) to represent each
query obtained from the query log repository. The field query
stores query keywords and documents holds source codes that
are clicked or downloaded against the corresponding query.
The procedure ConvertQueryToDoc takes a list of QDoc
and creates a collection of documents from these. A nested for
loop is employed where the outer for loop iterates on qDocs
to convert each query into document (Algorithm 1 Line 3-18).
For each item in qDocs, a list of String (docKeywords)

Algorithm 1 Data Processing
1: procedure CONVERTQUERYTODOCUMENT(qDocs)
2: List < List < String >> docs
3: for each qDoc ∈ qDocs do
4: List < String > docKeywords
5: for each doc ∈ qDoc.documents do
6: keywords = Process(doc)
7: docKeywords.addAll(keywords)
8: end for
9: List < String > queryTerms

10: queryTerms = Process(qDoc.query)
11: List < String > document
12: for each term ∈ queryTerms do
13: if term ∈ docKeywords then
14: document.add(term)
15: end if
16: end for
17: docs.add(document)
18: end for
19: return docs
20: end procedure
21: procedure PROCESS(List < String > doc)
22: doc = removePunctuation(doc)
23: List < String > processedList, tokens
24: tokens = tokenize(doc)
25: for each token ∈ tokens do
26: word = convertToRootForm(token)
27: if word /∈ stopWords then
28: processedList.add(word)
29: end if
30: end for
31: return processedList
32: end procedure

is defined to store terms from the retrieved codes that are
clicked or downloaded. The first inner for loop iterates on
these codes and invokes another procedure named Process
to get terms from each source code. The procedure Process
takes source code as input and removes punctuations from the
code (Algorithm 1 Line 21-22). After that, it generates tokens
and converts each token into term by employing stemming
operation. At last, the stop words are removed and a list
of all valid terms are returned (Algorithm 1 Line 31). After
receiving terms for each qDocs, the list docKeywords stores
these for pruning irrelevant query terms (Algorithm 1 Line
7). Another list named queryTerms is used to store all the
query terms returned by the procedure Process for each
query qDoc.query. A for loop is defined which iterates on
queryTerms to find irrelevant terms that are not available in
docKeywords (Algorithm 1 Line 12). To generate document
for the query qDoc.query, all the valid terms are stored in a
list named document (Algorithm 1 Line 14). The document
is added to the variable documents to create collection of
documents which is returned by the procedure convertToDoc.

Algorithm 2 Term-Term Matrix Construction
1: procedure CONSTRUCTMATRIX(docs)
2: Map < String, List < String >> matrix
3: List < String > terms
4: for each doc ∈ docs do
5: for each term ∈ doc do
6: if term /∈ terms then
7: terms.add(term)
8: end if
9: end for

10: end for
11: for each t1 ∈ terms do
12: List < CandidateTerm > cTerms
13: for each t2 ∈ terms do
14: if t1 == t2 then
15: continue
16: end if
17: nt1 = get #Docs Containing Term t1
18: nt2 = get #Docs Containing Term t2
19: nt1Andt2 = get #Docs Containing t1 & t2
20: nt1Ort2 = nt1 + nt2− nt1Andnt2
21: score = nt1Andt2/nt1Ort2
22: CTerm cTerm = new CTerm()
23: cTerm.term = t2
24: cTerm.score = score
25: cTerms.add(cTerm)
26: end for
27: cTerms = sort cTerms by score in descending

order
28: for each ct ∈ cTerms do
29: matrix[t1].add(ct.term)
30: end for
31: end for
32: return matrix
33: end procedure

B. Term-Term Matrix Construction

In order to find conceptually similar terms, a Term-Term
matrix is constructed from the document collection that is
created in the previous step. Each row in the matrix denotes a
posting list for a particular term where the list contains all
the related terms. Terms that occur in the same query are
considered conceptually related to each other. So, these are
ranked according to their co-occurrences in the query logs. To
expand a particular query term, top ranked terms related to the
query term are selected from the list.

The procedure ConstructMatrix in Algorithm 2 takes a
list of documents docs obtained from the previous step and
constructs collections of conceptually similar terms. A map
named matirx is created to store these terms and an empty
list terms is declared to save all the terms found in docs.
A nested for loop is defined where the outer loop iterates on
every document (doc) in docs and inner loop inserts terms into
terms found in the document doc (Algorithm 2 Line 4-10).

Another nested for loop is used to calculate similarity score
between every pair of terms in terms (Algorithm 2 Line 11-
31). For each term t1 in terms, a list cTerms is declared to
contain all the terms conceptually related to t1. CTerm is a
composite data type which stores term and similarity score by
using term and score attributes respectively. In the inner for
loop, the variables nt1 and nt2 are initialized with the number
of documents that contain t1 and the number of documents that
contain t2 respectively. Another variable nt1Andt2 stores the
number of documents that contain both t1 and t2. Next, the
number of documents having term t1 or t2 is calculated and
stored in nt1Ort2. Later, Jaccard similarity score is calculated
by taking ratio between nt1Andt2 and nt1Ort2 (Algorithm
2 Line 21). A variable cTerm of type CTerm is initialized
with term t2 and the calculated score. After adding all the
terms with respective similarity score, cTerms is sorted by
the score in descending order so that higher scored terms can
be retrieved easily (Algorithm 2 Line 27). The list is inserted
into the map matrix against the term t1 (Algorithm 2 Line
28-30). As a result, for a given term, its similar terms can be
quickly retrieved from the matrix.

C. Query Reformulation

Usually, user query contains few keywords to express user
needs. If these keywords are ambiguous, search engines may
fail to retrieve many relevant code fragments or fetch irrelevant
code snippets. To alleviate this ambiguity and represent infor-
mation needs more clearly, additional topic specific keywords
need to be added to the query. In this step, top scored terms
are obtained for each query keyword from the term collection
which is constructed in the previous step. Next, user query is
reformulated by adding these terms and finally submitted to
the search engine as expanded query.

IV. IMPLEMENTATION AND RESULT ANALYSIS

In order to evaluate the proposed technique named QEx-
pandator, a software tool was developed. An existing technique
called Thesaurus-based Automatic Query Expansion (TBAQE)
[5] was also implemented for comparative analysis. 22 real life
user queries were selected from Koders and search logs of one
year were collected from [1]. Google is the most widely used
search engine to retrieve software components and artifacts.
So, all the queries expanded with the techniques were run on
Google to compare the results.

A. Environmental Setup

QExpandator was implemented using C# programming
language. However, the technique is language and platform
independent, and only the fact extraction is language specific.
So, it can be implemented in any programming language.

B. Dataset Selection

One year long usage log of a commercial code search engine
named Koders was collected from [14]. These dataset was
fed into QExpandator to identify topic specific query terms
for query expansion. 22 real user queries were obtained from

Koders. A summary of these queries are presented in TABLE
I where the 2nd column (Query) contains all the original query
keywords, and third column (Number of Occurrences) depicts
the frequency of the queries within a year.

15 subjects were selected to evaluate the relevance of
the search results. 5 of them were senior software engi-
neers and rest 10 were masters students. The reason behind
choosing students in this study is that they can play im-
portant role in software engineering experiments [15]. All
the experimental datasets and source code are available here
(http://tinyurl.com/zlfwbjn).

C. Comparative Result Analysis

For comparative result analysis, queries in the experimental
dataset were expanded by QExpandator and modified queries
were run in Google. Relevance of the retrieved results were
judged by the subjects. Same procedure was followed for the
existing technique TBQE where queries were expanded using
WordNet. To compare the effectiveness between the tech-
niques, a metric named precision at 10 (P@10) was adopted.
The reason behind choosing this metric is that the amount of
open source projects are increasing rapidly and many relevant
code fragments or software artifacts are retrieved by the search
engines. Currently, developers are more interested to find the
desired results within top 10 retrieved code snippets instead
of going through all the fetched results. The metric P@10 is
defined as the number of relevant results from the first 10
retrieved code snippets or software artifacts.

A comparative result analysis is depicted in TABLE I where
fourth column contains the queries expanded by TBAQE, fifth
column contains the queries expanded by QExpandator. For
each query, corresponding values of P@10 with respect to
orginal query, TBAQE, and QExpandator are shown in fourth,
fifth, and sixth columns respectively. While analyzing the
results it is seen that 11 queries cannot be expanded by the
existing technique TBAQE. The reason is that these queries
contain technical terms and names of different frameworks
which have no synonyms in the WordNet. On the other hand,
QExpandator expands these queries by adding conceptually re-
lated terms through analyzing search log history. For example,
query#3 contains “awt” which is basically a Graphical User
Interface library provided in Java language. So this term is
expanded with the most relevant expanded term named “GUI”.

Figure 1 depicts the value of P@10 for each query with
respect to no expansion (original query), TBAQE, and QEx-
pandator. Here X-axis denotes the query# as shown in TABLE
I and Y-axis denotes the value of P@10. According to the
figure, TBAQE decreases P@10 for 31.82% of total user
queries whereas QExpandator increases P@10 for almost
63.64% user queries and it does not reduce P@10 for the
other queries. The reason for such behavior of TBAQE is that
it adds synonyms as additional terms to the original query
and these terms express different semantic meanings from
technical point of view. The expanded query then represents
information needs that are different from the original query.
For example, in query#19 “sort” keyword is used to get code

TABLE I
COMPARATIVE RESULT ANALYSIS

Query Number
of Occur-
rences

Query Expanded by Theasaurus Query Expanded by QEx-
pandator (the most relevant
term is added)

P@10
for
Orginal
Query

P@10
for
TBAQE

P@10
for
Qex-
panda-
tor

1 apache 411 apache (apache OR tomcat) 9 9 10
2 audio 360 (audio OR sound) (audio OR encoder) 4 1 5
3 awt 189 awt (awt OR GUI) 5 5 10
4 dao 390 dao (dao OR jdbc) 1 1 10
5 data

source
5 (data OR information) AND (source OR seed OR germ OR

reference OR beginning OR origin OR root OR rootage OR
reservoir OR generator OR author OR informant)

(datasource OR connection) 8 0 8

6 data
struc-
ture

42 (data OR information) (structure OR construction) (data structure OR algo-
rithm)

10 9 10

7 date 1840 (date OR appointment OR engagement OR escort OR see) (date OR format) 6 1 6
8 files 2164 files (files OR class) 2 2 10
9 ftp 1865 ftp (ftp OR server) 10 10 10
10 hibernate 640 hibernate (hibernate OR jpa) 10 10 10
11 huffman 967 huffman (huffman OR coding) 7 7 10
12 image 1693 (image OR effigy OR simulacrum OR picture OR icon OR

ikon OR persona OR prototype OR paradigm OR epitome
OR trope OR figure OR double OR visualize OR visualiseOR
envision OR project OR fancy OR see)

(image OR attribute) 0 0 5

13 jsp 423 jsp (jsp or java) 8 8 10
14 list 1241 (list OR tilt OR inclination OR lean OR leaning OR listing

OR name OR number OR heel)
(list or util) 8 0 10

15 listener 208 (listener OR hearer OR auditor OR attender) (listener or event) 0 0 10
16 log 879 (log OR logarithm OR backlog OR lumber) (log OR log4j) 3 0 10
17 lucene 383 lucene (lucene OR solr) 10 10 10
18 parser 1449 parser (parser OR dom) 7 7 10
19 sort 2402 (sort OR kind OR form OR variety OR sorting OR classify

OR class OR assort OR separate OR screen OR sieve)
(sort OR bubble) 10 0 10

20 spring 381 (spring OR leap OR leaping OR saltation OR bound OR
bounce OR give OR springiness OR fountain OR outflow OR
outpouring OR springtime OR resile OR rebound OR recoil
OR reverberate OR ricochet OR jump OR form)

(spring OR framework) 5 0 7

21 test 1537 (test OR trial OR run OR tryout OR examination OR exam
OR quiz OR prove OR try OR examine OR essay OR screen)

(test OR Junit) 1 1 7

22 webservice297 webservice (webservice OR SOAP) 10 10 10

snippets that order items in a list in specific order. One of
the synonyms of sort is “sieve” which is used in the expanded
query by TBAQE. “sieve” represents a prime number generator
algorithm in programming context and it has no similarity
with the keyword “sort”. As a result, the expanded query
suffers from reduced P@10. Conversely, “bubble” keyword is
appended to the query sort by QExpandator and it is consistent
with the search topic because bubble sort is a special type of
sorting algorithm. Due to adding context and topic specific
terms, QExpandator increases the value of P@10.

Ambiguity in query terms are found in several queries
such as query#2, query#14, query#15, query#16, and query#21
as shown in TABLE I. Usually ambiguous terms express
different semantic meanings in different contexts. For example,
in query#16 “log” keyword has three semantic meanings which
are logarithmic function, an element of a tree, and observing
execution traces of a program. TBAQE uses “logarithm” as
synonym of “log” keyword and forces the search engine to
retrieve logarithmic functions which reduces P@10. This is
because the search intent is to find example code of tracking
execution behavior. However, QExpandator adds “log4j” as

expanded term which is relevant to search topic. The technique
handles ambiguous terms by adding search intent specific
keywords and increases the effectiveness of search engine.

Although QExpandator improves P@10 for 63.64% of total
user queries by adding search topic specific keywords, and for
the rest 36.36% queries, it cannot increase the value of P@10.
The reason is that most of these queries contain keywords that
represent the information needs properly. Conversely, TBAQE
reduces P@10 for 31.82% user queries due to adding only
synonyms that do not consider search context properly.

In essence, QExpandator improves P@10 by 29.1% on an
average that leads to the ultimate P@10 value 90% for each
user query. Moreover, the technique does not hurt or reduce the
value of P@10 for any query. Conversely, TBAQE reduces the
P@10 for 31.82% user queries and no improvement is found
in any user query for this technique. QExpandator performs
better than TBAQE because it adopts search topic and context
specific keywords for query expansion instead of synonyms
that have different meanings in various contexts.

Fig. 1. Precision at 10 Analysis

V. CONCLUSION

The effectiveness in code search is reduced when query
terms do not express the desired information needs properly.
As a result, many relevant code fragments are missed and
irrelevant code snippets are retrieved against user query. In
this paper, a technique named QExpandator is proposed which
increases the effectiveness in code search by expanding user
query with search topic and context specific keywords.

QExpandator adopts search log history to identify concep-
tually similar words. It converts each query into document
vector where each term in the vector corresponds to the query
term. Conceptually similar terms are identified by employing
Jaccard similarity on the co-occurrence of document terms. A
term-term matrix is constructed to store all the similar terms
in the same row in descending order of the similarity score.
Finally, for a given user query, each query term is expanded
by adding top scored terms from the matrix.

In order to evaluate the proposed technique, a software tool
was developed and 22 user queries were used for comparative
analysis with the existing technique TBAQE. Precision at 10
was used as evaluation metric for its popularity in effec-
tiveness measurement. The result analysis demonstrates that
QExpandator produces 48.6% more improvement in P@10
than TBAQE. Moreover, on an average, it increases the value
of P@10 from 60.9% to 90% for each query. The reason is that
instead of using synonyms, it adds context specific keywords
as expanded terms. In future, more real life user queries will
be used to observe the behavior of the technique.

ACKNOWLEDGMENT

This research is supported by ICT Division, Ministry
of Posts, Telecommunications and Information Technology,
Bangladesh. 56.00.0000.028.33.065.16-747, 14-06-2016.

REFERENCES

[1] Otávio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Hitesh
Sajnani, and Cristina V Lopes. Can the use of types and query expansion
help improve large-scale code search? In 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages
41–50. IEEE, 2015.

[2] Hinrich Schütze. Introduction to information retrieval. In Proceedings of
the international communication of association for computing machinery
conference, 2008.

[3] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. Archetypal
source code searches: A survey of software developers and maintainers.
In Proceedings of the 6th International Workshop on Program Compre-
hension (IWPC), pages 180–187. IEEE, 1998.

[4] Claudio Carpineto and Giovanni Romano. A survey of automatic query
expansion in information retrieval. ACM Computing Surveys (CSUR),
44(1):1–56, 2012.

[5] Otávio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and
Cristina V Lopes. Thesaurus-based automatic query expansion for
interface-driven code search. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 212–221. ACM,
2014.

[6] Tessa Lau and Eric Horvitz. Patterns of search: analyzing and mod-
eling web query refinement. In Proceedings of the 7th International
Conference on User Modeling, pages 119–128. Springer-Verlag, 1999.

[7] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T.
Dumais. The vocabulary problem in human-system communication.
Communications of the ACM, 30(11):964–971, 1987.

[8] George A Miller. Wordnet: a lexical database for english. Communica-
tions of the ACM, 38(11):39–41, 1995.

[9] Reid Holmes, Robert J Walker, and Gail C Murphy. Strathcona example
recommendation tool. In ACM SIGSOFT Software Engineering Notes,
volume 30, pages 237–240. ACM, 2005.

[10] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,
Pierre Baldi, and Cristina Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 681–682. ACM, 2006.

[11] Suresh Thummalapenta and Tao Xie. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the 22nd
IEEE/ACM international conference on Automated software engineer-
ing, pages 204–213. ACM, 2007.

[12] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel
Ossher. Codegenie:: a tool for test-driven source code search. In
Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 917–918.
ACM, 2007.

[13] Sushil Krishna Bajracharya and Cristina Videira Lopes. Mining search
topics from a code search engine usage log. In Proceedings of
the 6th IEEE International Working Conference on Mining Software
Repositories, pages 111–120. Citeseer, 2009.

[14] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre
Baldi. Mining concepts from code with probabilistic topic models. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 461–464. ACM, 2007.

[15] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard,
Peter W Jones, David C. Hoaglin, Khaled El Emam, and Jarrett
Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on software engineering, 28(8):721–
734, 2002.

