A Similarity-Based Method Retrieval Technique to Improve
Effectiveness in Code Search

Abdus Satter

Institute of Information Technology
University of Dhaka
Dhaka, 1000
bit0401@iit.du.ac.bd

ABSTRACT

The effectiveness of a code search engine is reduced if semanti-
cally similar code fragments are not indexed under common and
proper terms. In this paper, a technique named Feature-Wise Simi-
lar Method Finder (FWSMF) is proposed which checks functional
similarity among codes by executing and matching outputs against
the same set of inputs. It then determines appropriate index terms
by finding keywords that are found in most of the code snippets. As
a result, code fragments that contain different keywords but imple-
ment the same feature, can be retrieved all together. Experimental
analysis shows that on an average, FWSMF produces 61% and 29%
more precision than two existing techniques named Keyword Based
Code Search (KBCS) and Interface Driven Code Search (IDCS) re-
spectively. It also shows 34% and 55% more recall than KBCS and
IDCS correspondingly. It retrieves self executable code snippets
which can be easily pluggable in the intended development context
and thus reduces time and effort while reusing code.

KEYWORDS
Code Search, Code Reuse, Self-Executable Code

1 INTRODUCTION

The effectiveness of a Code Search Engine (CSE) depends on the
number of retrieved code fragments that are relevant to the user
need. The reason is that developers need existing code snippets
to understand the implementation of a particular feature, to know
the usage of an Application Programming Interface, or to reuse
these with some adaptations in the development context [5]. A
CSE should retrieve as many relevant code fragments as possible
so that developers can choose the one that best satisfies their needs.
Usually, traditional Information Retrieval (IR) centric approaches
are employed by the CSE where keywords found in the code snip-
pets (i.e., method name, variable name, etc.) used to construct the
index [15]. In these approaches, a collection of code fragments that
perform the same feature but do not contain the same keywords,
will be indexed against different terms. When a query term matches
one of these index terms, only the corresponding code fragment
will be retrieved instead of all these fragments. Many relevant code

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Programming 17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). 978-1-4503-4836-2/17/04...$15.00
DOI: http://dx.doi.org/10.1145/3079368.3079372

Kazi Sakib

Institute of Information Technology
University of Dhaka
Dhaka, 1000
sakib@iit.du.ac.bd

fragments cannot be retrieved due to this keyword matching policy
and thus the effectiveness of the code search engine is reduced.

In order to improve the effectiveness of a code search engine,
feature-wise similar code fragments should be indexed under com-
mon and proper terms. This will retrieve all the relevant code
snippets together that contain different keywords. However, it is
challenging to determine feature-wise similarity among the syntac-
tically different code fragments because it requires determining the
implemented feature of these fragments [11]. Another challenge is
to select proper term that represents the intent of a code fragment
properly. For example, three methods named “bubble”, “bbl”, and
“bubbleSort” sort an array of elements. The term “bubble” is am-
biguous, “bbl” is not consistent with human perceivable language
dictionary. However, the term “bubble sort” expresses the imple-
mented feature properly and it should be used to index all these
methods. Selecting such proper term automatically for indexing is
also a research challenge.

Several techniques have been found in the literature to im-
prove the effectiveness in code search which can be classified
into Keyword Based Code Search (KBCS), Interface Driven Code
Search (IDCS), and Semantic based Code Search (SBCS). KBCS
[1, 2, 10, 14, 15] considers the source code as plain text docu-
ment and constructs index following IR centric approaches. IDCS
[4, 16, 17] helps to refine the user query by explicitly telling the
interface of required code snippets (such as signature of a method).
SBCS [6, 7, 12, 13] runs user provided test cases on the codes re-
trieved by IDCS to find the semantically relevant code fragments.
None of these techniques considers functional similarity among
code fragments, and index term appropriateness when constructing
index. Thus, these miss many semantically relevant codes that do
not contain proper keywords.

2 PROPOSED TECHNIQUE

In this paper, a technique named Feature-Wise Similar Method
Finder (FWSMF) is proposed to find the semantically similar but
syntactically different methods. The technique comprises four steps
which are described as follows.

Self-Executable Method Generation: The technique starts
with parsing the source files to identify all the methods in a given
code base. For each method (m), a Call Graph is generated to
identify the methods invoked by m directly or indirectly. A Data
Dependency Graph (G) is also constructed for m to find the fields
that are declared outside the method body but used by it. Each
node in G denotes a field or variable, and an edge a — b expresses
that a depends on b. All the libraries are identified on which m is

dependent for execution. Method, field, and data dependencies are
accumulated for m to make it self-executable.

Method Signature Regeneration: Although the signature of
a method expresses the input and output types of the method, this
is not sufficient enough for several cases. A method may contain
no parameter in its signature but may manipulate one or more
variables and/or fields. Again, a method may contain return type
void but its task is to change the value of a field. To explicitly
know the input and output types, the signature of a self-executable
method is regenerated by constructing Data Dependency Graph
for the method. Nodes in the graph that express the fields and
have in-degree zero are considered as parameters of the method. A
complex data type is created to denote return type where nodes that
have out-degree zero and represent fields, are added as members of
the complex data type. Finally, if the method body contains return
statement, it is replaced with the new complex data type otherwise
added to the end of the method body to incorporate the changes.

Clustering Similar Methods: For a given set of self-executable
methods (M) obtained following the previous steps, similarity is
checked by running each method m € M and checking the output.
Initially, a set of input values (I) is generated for m € M and corre-
sponding set of output values (O) is obtained through executing m.
For each m’ € M and m # m’, m’ is said to be functionally similar
if its output set O’ for I is the same to O. Accordingly, methods are
clustered based their feature-wise similarities where each cluster
contains the methods that perform the same task. That is, a cluster
C € M and Vx,y : C- x and y are functionally similar. There may
have different techniques to implement the same feature, for exam-
ple, sorting can be implemented following bubble sort, merge sort,
and etc. All the sorting techniques will be in the same cluster as
these are functionally similar but implementation-wise different.
It would not be good to retrieve codes implementing bubble sort
when a user looks for merge sort. So, each cluster C is further de-
composed into a set of clusters (R) based on time and memory space
complexities. That is, R € C and Vr : R- (Vp,q : r - O(p) = O(q) and
p, q are functionally similar).

Index Construction and Query Formulation: After obtain-
ing all the clusters (T) from the previous step, keywords are ex-
tracted from the method name which are further tokenized and
stemmed to generate terms. For each cluster, suitable terms are
selected for indexing which appear in most of the methods of that
cluster. A boolean query is expanded through WordNet to solve vo-
cabulary mismatch problem. Finally, the expanded query is matched
with the index to retrieve feature-wise similar codes.

3 EXPERIMENTAL SETUP AND RESULT
ANALYSIS

To conduct experimental analysis, FWSMF was implemented in Java.
8 different features were selected from existing works [8-10, 12]
(as shown in Table 1) and 25 masters students were employed to
implement each of these features. Thus, the experimental code base
contains 25 code snippets per feature and 200 code snippets in total.
FWSMF was run on these codes to check the clustering purity. It
constructed 8 clusters accurately where each cluster contains all
the 25 implementations of the respective feature.

Table 1: Selected Functionalities with Number of Queries

Functionality # queries | Functionality

decoding String 10

queries
rotating array 15

encrypting password | 20
decoding a URL 16
generating MD5 hash | 20

resizing image | 7
scaling Image 21
encoding string | 11

Table 2: Result Analysis in Percentage

KBCS | IDCS | FWSMF
Precision 35 67 96
Recall 59 38 93
Retrieved Self-Executable Codes | 28 75 100

Three open source projects (EGit!, JGit?, JUnit?) were added to
the experimental code base to determine the precision and recall of
FWSMEF in identifying relevant codes written by the subjects. Two
existing techniques KBCS and IDCS were also used for comparative
result analysis. One of the common difficulties in reusing existing
code is to make the code executable in the development context
through resolving dependencies, and it induces significant amount
of development time and cost. Developers should be provided more
self-executable relevant codes so that they can use these easily
without thinking dependencies required for execution. So, number
of retrieved self executable codes is also considered here.

Subjects were asked to generate queries for each of the experi-
mented features and evaluate the results in terms of relevance and
self-executability. There were 120 user queries in total as shown in
Table 1 and a summary of the results is shown in Table 2. On an
average, FWSMF shows 34% and 55% more recall than KBCS and
IDCS respectively. Besides, precision is improved by 61% and 29%
more by FWSMF in comparison with KBCS and IDCS respectively.
The reason for such results is that both KBCS and IDCS do not con-
sider feature-wise similarity among code fragments during index
construction and many relevant codes cannot be obtained due to
indexing against inappropriate terms. KBCS and IDCS retrieves 28%
and 61% self-executable code fragments correspondingly. However,
All the code fragments retrieved by FWSMF are self-executable due
to resolving function, data, and library dependencies.

4 CONCLUSION

This paper presents a technique named FWSMF which improves
effectiveness in code search by indexing functionally similar codes
under proper terms, and delivering self-executable codes to reduce
development time and cost. According to the result analysis, it
outperforms existing techniques - KBCS and IDCS in terms of
precision, recall, and retrieved code quality. Although existing code
clone detection approaches can improve the effectiveness, these
provide false positive results if certain parameters’ values are not set
properly [3]. FWSMF checks dynamic behavior through executing
source codes to ensure feature-wise similarity among these codes.

Uhttps://www.github.com/eclipse/egit
Zhttps://www.github.com/eclipse/jgit
Shttps://www.github.com/junit-team/junit4

REFERENCES

(1]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications.
ACM, 681-682.

Andrew Begel. 2007. Codifier: a programmer-centric search user interface. In
Proceedings of the workshop on human-computer interaction and information
retrieval. 23-24.

Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and
Tao Xie. 2012. XIAO: tuning code clones at hands of engineers in practice. In
Proceedings of the 28th Annual Computer Security Applications Conference. ACM,
369-378.

Reid Holmes, Robert] Walker, and Gail C Murphy. 2005. Strathcona example
recommendation tool. In ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM,
237-240.

Oliver Hummel, Werner Janjic, and Colin Atkinson. 2008. Code conjurer: Pulling
reusable software out of thin air. IEEE software 25, 5 (2008), 45-52.

Werner Janjic and Colin Atkinson. 2012. Leveraging software search and reuse
with automated software adaptation. In Search-Driven Development-Users, Infras-
tructure, Tools and Evaluation (SUITE), 2012 ICSE Workshop on. IEEE, 23-26.
Otavio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher.
2007. CodeGenie:: a tool for test-driven source code search. In Companion to
the 22nd ACM SIGPLAN conference on Object-oriented programming systems and
applications companion. ACM, 917-918.

Otavio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V
Lopes. 2014. Thesaurus-based automatic query expansion for interface-driven
code search. In Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 212-221.

OtaVio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar
Masiero, and Cristina Lopes. 2011. A test-driven approach to code search and
its application to the reuse of auxiliary functionality. Information and Software
Technology 53, 4 (2011), 294-306.

Otavio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Hitesh Sajnani,
and Cristina V Lopes. 2015. Can the use of types and query expansion help
improve large-scale code search?. In 15th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 41-50.

Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre Baldi.
2007. Mining concepts from code with probabilistic topic models. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering. ACM, 461-464.

Steven P Reiss. 2009. Semantics-based code search. In Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society, 243—
253.

Naiyana Sahavechaphan and Kajal Claypool. 2006. XSnippet: mining for sample
code. ACM Sigplan Notices 41, 10 (2006), 413-430.

Susan Elliott Sim and Rosalva E Gallardo-Valencia. 2013. Finding source code on
the web for remix and reuse. Springer.

Renuka Sindhgatta. 2006. Using an information retrieval system to retrieve source
code samples. In Proceedings of the 28th international conference on Software
engineering. ACM, 905-908.

Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the 22nd IEEE/ACM
international conference on Automated software engineering. ACM, 204-213.
Amy Moormann Zaremski and Jeannette M Wing. 1995. Signature matching: a
tool for using software libraries. ACM Transactions on Software Engineering and
Methodology (TOSEM) 4, 2 (1995), 146-170.

	Abstract
	1 Introduction
	2 Proposed Technique
	3 Experimental Setup and Result Analysis
	4 Conclusion
	References

