
FANTASIA: A TOOL FOR AUTOMATICALLY IDENTIFYING
INCONSISTENCY IN ANGULARJS MVC APPLICATIONS.

MD RAKIB HOSSAIN
Class Roll : BSSE 0516

Exam Roll : 506
Registration No : 2012-212-073

An Academic Project
Submitted to the Bachelor of Science in Software Engineering Program Office

of the Institute of Information Technology, University of Dhaka
in Partial Fulfillment of the
Requirements for the Degree

BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

Institute of Information Technology
University of Dhaka

DHAKA, BANGLADESH

c© Md Rakib Hossain Misu, 2016

FANTASIA: A TOOL FOR AUTOMATICALLY IDENTIFYING
INCONSISTENCY IN ANGULARJS MVC APPLICATIONS.

MD RAKIB HOSSAIN

Approved:

Signature Date

Supervisor: Dr. Kazi Muheymin-Us-Sakib
Professor and Director
Institute of Information Technology
University of Dhaka

ii

To Hosne Ara Begum, my mother
who has always been there for me and inspired me

iii

Abstract

Abstract AngularJS is a JavaScript based MVC framework popular for developing

Single Page Applications (SPA) development. Inconsistency may occur in Angu-

larJS applications since JavaScript is a loosely type programing language. Most

of the JavaScript errors are DOM related errors that are potentially caused by

inconsistency. Mostly two types of inconsistencies namely identifier and type in-

consistency occur among the modules of AngularJS. It creates hidden bugs and

leads the application to perform wrong behaviors. Developers have to perform

manual inspections to identify these inconsistencies.

The existing approach can detect inconsistencies only for the older version of An-

gularJS applications. Moreover, it also omits the presence of custom directives in

those applications. The recommended angular coding style guides and the new

features of AngularJS are not supported by the existing tool. It is officially recom-

mended for the developers to follow angular coding style guides and new features

of AngularJS . It is also recommended to create custom directives while developing

loosely coupled modules and applications. So, while identifying the inconsisten-

cies, in the presence of the custom directives should be considered. In order to

overcome the above limitation of the existing approach, an automatic approach in

the form of a tool namely FANTASIA is proposed and developed that can identify

inconsistencies in AngularJS MVC applications in the presences of custom direc-

tives.

A fault injection study and comparative study are performed on fifteen AngularJS

iv

MVC applications to check the accuracy and efficiency of FANTASIA. For the

experiment, FANTASIA and existing approach ARBUSH both are implemented

using JavaScript programing language. Faults are injected into the selected ap-

plication according to the JavaScript MVC framework consistency models prop-

erties. Both the techniques are run on the same faulty applications, and manual

inspection is also performed on those applications. It is observed that FANTASIA

performs well with the 92.05% recall in twelve applications that do not contain

custom directives along with developed by following angular style guides. It can

also identify inconsistency the rest of the three applications with the recall of

85.6% where the presence of custom directives is considered. It is seen that AU-

REBESH cannot identify inconsistency in that applications that are developed

by following AngularJS latest version. For conducting a comparative study, both

FANTASIA and AUREBESH are run on applications that are developed by fol-

lowing the older version of AngularJS .The result shows that both the FANTASIA

and AUREBESH perform well with the recall of 92.05% and 91.49% respectively.

It is noted that recall of identifying inconsistency not changed for FANTASIA as it

can identify inconsistency in both versions of AngularJS. Besides, FANTASIA can

detect inconsistency in the presence of custom directives and gets 85.6% recall.

On the other hand , AUREBESH cannot identify inconsistency that are present

within the custom directives and gets 42.68%.

v

Acknowledgments

I would like to thank Dr. Kazi Muheymin-Us-Sakib for his support and guidance

during the project compilation. He has been relentless in his efforts to bring the

best out of me.

vi

Contents

Approval ii

Dedication iii

Abstract iv

Acknowledgements vi

Table of Contents vii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 2
1.2 Research Question . 7
1.3 Contribution of This Research Project 8
1.4 Organization of The Document . 9

2 Background Study 10
2.1 JavaScript . 10
2.2 The Model-View-Controller Pattern 11
2.3 Framework . 13
2.4 JavaScript MVC Frameworks . 13
2.5 Modules and Features of AngularJS 14
2.6 AngularJS Style Guides and Best Practice 18
2.7 Inconsistency Issues in AngularJS 19
2.8 Application of Inconsistency Identification 20
2.9 Summary . 21

3 Literature Review 22
3.1 Application of MVC Pattern . 23

3.1.1 Flexible Web Application Partitioning 23
3.1.2 Meme Media Technology . 24

3.2 DOM Related Faults in JavaScript 25
3.2.1 JavaScript Errors in the Wild 26
3.2.2 AutoFlox . 27

vii

3.2.3 Empirical Study . 29
3.2.4 Vejovis . 30

3.3 Inconsistency Issues in JavaScript 31
3.3.1 Type-Devil . 31
3.3.2 Aurebesh . 34

3.4 Survey Study on AngularJS . 35
3.5 Summary . 37

4 Fantasia: An Automatic Inconsistency Identification Technique
for AngularJS 1.x MVC Applicatinos 38
4.1 Overview of proposed Inconsistency Identification Techniques 39
4.2 Initializing MVC Group . 42
4.3 Populating MVC Group . 43
4.4 Extracting Custom Directives . 44
4.5 Identifying Inconsistencies . 47
4.6 Summary . 48

5 Implementation and Result Analysis 49
5.1 Experimental Setup and Required Tools 50
5.2 Experimental Datasets . 51
5.3 Fault Injection Study . 52
5.4 Result Analysis . 54

5.4.1 Accuracy . 54
5.4.2 Performance . 55

5.5 Comparative Result Analysis . 56

6 Discussion and Conclusion 59
6.1 Discussion and Conclusion . 59
6.2 FANTASIA: The proposed inconsistency identification technique in

the presence of custom directives in AngularJS MVC Application . 60
6.3 Discussion of the Result . 61
6.4 Threats to Validity . 61
6.5 Future Work . 62

Bibliography 64

viii

List of Tables

5.1 List of AngularJS MVC applications (absence of custom directives) 52
5.2 List of AngularJS MVC applications (having custom directives) . . 52
5.3 Types of Injected Faults . 53
5.4 Fault injection result performed by FANTASIA on twelve Angu-

larJS MVC applications (Without custom directives) 55
5.5 Fault injection result performed by FANTASIA on three AngularJS

MVC applications (Having custom directives) 56
5.6 Comparative result between FANTASIA and AUREBESH on twelve

AngularJS MVC applications (Without custom directives) :SD rep-
resents Successful detection, FD represents Failed detection 57

5.7 Comparative result between FANTASIA and AUREBESH on three
AngularJS MVC applications (Having custom directives) :SD rep-
resents Successful detection, FD represents Failed detection 58

ix

List of Figures

1.1 Application configuration file . 3
1.2 like.controller.js file . 3
1.3 like.view.html file . 4
1.4 appVersion.directive.js . 5
1.5 appVersion.controller.js . 5
1.6 appVersion.view.html file . 6

2.1 Angular Appication . 16

3.1 JavaScript type inconsistency example 32

4.1 High Level Architecture of Fantasia 40

x

Chapter 1

Introduction

AngularJS is a JavaScript-based MVC framework used for developing loosely cou-

pled web applications, which are known as Single Page Applications (SPA) [1].

This MVC framework provides developers with the flexibility to separate business

logic in several reusable modules and components such as model, view, controller,

directive, service, etc. However, to use these modules, developers have to follow

some coding convention, for example, the view should be defined in an HTML

code, and the controller and model data should be defined in JavaScript code.

Developers may write the JavaScript code in the view HTML code or in a sepa-

rate JavaScript file. It is recomanded for the developers to define the controller

and model data in a separate JavaScript file for code readability and maintain-

ability. The view consists of different types of DOM (Document Object Model),

which is a data structure used to represent the hierarchy of HTML elements and

their properties. The controller is responsible for representing the model data into

the view. If any changes occur in the model data, controller function is responsible

for making these change.

AngularJS depends on the identifier to show its functionality among the mod-

ules, especially in the view and controller. An identifier refers the name of the

model variables and controller functions present in the controller [2]. To represent

1

the functionality, the identifier of the model variable and the controller functions

should be consistent in the view. Besides, in AngularJS views consist of various

AngularJS built in directives such as ng-if, ng-count, that takes model variables

and controller functions with a specific type [3]. So, the model variables and

controller functions are used in that directive should be the consistent type. It

is difficult to find inconsistencies when an application contains multiple models,

views, and controllers. Developers have to perform manual inspections to find

these inconsistencies. So, to identify this inconsistency problem, the aim of this

research project is to develop an automatic approach in the form of a tool named

FANTASIA that can identify inconsistencies in the AngularJS application. The

tool performs static code analysis to identify the inconsistency. The tool can also

automatically generate AngularJS applications and different modules such as a

controller, view, service through scaffolding. The following sections of this chap-

ter explain the motivation for working in inconsistency identification, the research

questions of the thesis, contribution of the thesis and organization of the thesis.

1.1 Motivation

In AngularJS applications, inconsistency creates hidden bugs [4]. Sometimes de-

velopers defined some model variables and controller functions that are not used

in the view. It creates redundancy in the controller and reduces the readability

and maintainability of the code. To easily understand the inconsistency problem

in the AngularJS applications, an example case is exhibited below.

It is mentioned earlier; AngularJS MVC applications contain several modules.

The controller module is correspondent to a view module. It is recently the

best practice to define the correspondent views and controllers in the applica-

tion configuration file. In the application configuration file, the route of the ap-

plication is defined. It describes for which view which controller is responsible.

2

Figure1.1 shows an application configuration file. In this file, there is an app

named likedApp(Figure1.1-line:1) is defined including its route configuration.

Figure 1.1: Application configuration file

The route configuration contains many states. Here, it contains one state ”/

” that refers the home path of the application. Every state also includes some

properties such as templateUrl, controller, and controllerAs. The templateUrl

property (Figure1.1-line: 4) refers the view of the path, and controller property

(Figure1.1-line: 5) refers the correspondent controller of this view. Finally con-

trollerAs property (Figure1.1-line: 6) refers the alice that is used to represent the

controller in the view.

Figure 1.2: like.controller.js file

Figure 1.2 represent the controller file of the likeController. It is observed

that it contains a variable named vm. It is the alice of this controller that is

defined in the application configuration file (Figure1.1-line: 6).It represents the

controller in the view. All the model variables and controller functions with in

3

this controller are bind with this variable. Besides, three model variables namely

vm.AppTitle, vm.count and vm.people (Figure1.2-line: 5, 6, 7). On the other

hand, the correspondent view of this controller is namely like.view.html that is

shown in Figure 1.3.

Figure 1.3: like.view.html file

From the view, in Figure 1.3, it is seen that a model variable named vm.AppsTitle

(Figure1.3-line: 3) is used here, but it is not defined in the controller as a model

variable. However, the model variable defined by the controller is called vm.AppTitle

(Figure1.2-line: 5) that is not consistent with its view. So, there presents an iden-

tifier inconsistency. Moreover, in the like.view.html there is an AngularJS built-in

directive called ng-pluralize (Figure1.3-line: 5 to11). This directive has two at-

tributes namely count and when (Figure1.3-line: 5). the count attribute accepts

number data type. In this example, it takes a model variable named vm.count

(Figure1.3-line: 5) that defined in the likeController with the same name vm.count

(Figure1.2-line: 6) but with a string value rather than a number value. So, it

causes a type inconsistency that leads the application to perform the wrong be-

havior. The application contains both the identifier and type inconsistency that

cause the application not to perform its function appropriately.

It is noted that there is a HTML tag called app-version is present in the like.view.html.

It is not a recognized HTML tag. It is a custom HTML tag that is created using

AngularJS directive module. AngularJS allows the developer to create own HTML

4

tag through using custom directives. The definition of the app-version directive is

shown in Figure 1.4

Figure 1.4: appVersion.directive.js

It is seen from the Figure 1.4 that the app-version directive contains various

properties such as templateUrl, restrict, controller, controllerAs etc. It may also

contain view and controller depending on the type of this directive. The templa-

teUrl (Figure1.4-line: 5) property represents the view file of this directive. The

controller and controllerAs represent the controller and the alice of this directive

controller. The details about directive are found in the chapter 2 section X. Gen-

erally, the view displays the output of the directive, and the controller contains

the data that is used by the directive. Figure 1.5 shows the appVersionController

of the directive app-version (Figure1.4-line: 16).

Figure 1.5: appVersion.controller.js

5

The controller contains two model variables namely vm.author and vm.description

(Figure1.5-line: 5, 6) the correspondent view of this controller named appVer-

sion.view.html is shown in Figure 1.6. It is observed that the value vm.descriptions

used in the view (Figure1.6-line: 3), is not defined in the controller.The controller

contains a model variable named vm.description that is not used in the directives

view. So, it creates identifier inconsistency with in the app-version directive.

Figure 1.6: appVersion.view.html file

Researchers proposed various approaches to identify inconsistency. For exam-

ple Michael et al. (2015) [5]. proposed an approach named Type-Devil that can

detect type inconsistency in the dynamic programing languages such as JavaScript.

However, it cannot detect inconsistencies in AngularJS MVC applications. The

reason it that inconsistencies occur in the AngularJS applications between the

HTML code and JavaScript code. However, Type-Devil can only find an inconsis-

tency that only presents in the JavaScript code. Besides, to detect the inconsis-

tency in the JavaScript applications, an automatic approach is proposed by Frolin

et al. (2015) [6] in the form of a tool named AURBESH. It can detect the identifier

and type inconsistency in the AngularJS applications. However, this tool is not

compatible with the new AngularJS features and fail to detect inconsistencies in

that application that is developed by following AngularJS style guides. Moreover,

this approach cannot detect inconsistencies that present in the custom directives

since it omits the present of custom directives in the applications.

6

1.2 Research Question

In order to accurately identify inconsistency among the associated modules, MVC

groping should be built in the presence of custom directives. Existing tool AU-

RBESH may find inconsistency in AngularJS application ignoring the presence of

custom directives. Moreover, it may only work for the older version of AngularJS

1.x application. So, it fails to detect inconsistency from the code, which is written

by following the recent coding style guide, without considering the application

structure. It is inferred that existing tool may not accurately detect inconsistency

in AngularJS 1.x MVC applications. So, this is lead to the following research

question .

How to accurately identify inconsistency in AngularJS 1.x MVC application?

This question is associated with some sub-questions. So it will be answered by

the following sub questions.

1. How to build MVC grouping in the presence of custom directives from dif-

ferent application structures? To answer this sub-question following steps

will be adopted

(a) A generalized application structure should be defined to locate the files,

associated with the application.

(b) Every file name should be descriptive enough to be able to figure out

which section or component it is in and what type of AngularJS object

it is [7].

2. How to identify inconsistency in the presence of the latest version of Angu-

larJS 1.x MVC application considering recent coding style? The following

steps are followed to answer this sub-question.

7

(a) Application should be built by following the recommended syntax and

coding style using angular style guide over any other syntax.

(b) If any application contains primitive coding syntax and AngularJS ver-

sion, it will be re-factored to recent AngularJS version by following the

angular style guide.

1.3 Contribution of This Research Project

In this research based academic project, a technique is developed namely FAN-

TASIA in the form of a tool that can identify inconsistency in AngularJS 1.x

MVC applications. Static code analysis is performed by this tool to find the in-

consistencies. Initially, the application configuration file is extracted to find the

associated views, controllers and alices. All the related view and controller files are

extracted. This extraction provides the model variables and controller functions

that are defined in the controllers and used by the views. After that, it is checked

if there any custom directive presents in the view. If the custom directive is used

by the view, the directive and its associated files are also extracted. It provides the

model variables and controller functions that are related to the directive. Finally,

a list of the mvc group is built by using the associated model, view, controller and

directives. Eventually, the consistencies are checked for each of the element of the

group to identify the inconsistencies.

To evaluate the accuracy and performance of this technique and the tool, a fault in-

jection study and a comparative study in performed. The tool FANTASIA and the

existing tool AUREBESH are developed using JavaScript programing language on

top of Node.js framework. The studies are performed on fifteen AngularJS MVC

applications as an experimental dataset. The dataset is divided into two categories

namely presence of custom directive and absence of custom directive. Among the

8

fifteen applications, twelve applications do not contain custom directives. The

rest of the three applications contain custom directives. The outcome of the fault

injection study is that the tool FANTASIA gets 92.05% recall for identifying in-

consistencies in those twelve applications that do not contain custom directive.

It also acquires 85.6% recall for identifying inconsistencies in present of custom

directives.

1.4 Organization of The Document

This section provides an overview about the remaining chapters of this thesis. The

chapters are organized as follows.

Chapter 2: JavaScript, Framework, JavaScript MVC Frameworks, Angu-

larJS different types of AngularJS modules are exemplified in this chapter. Be-

sides, inconsistency issues and importance of inconsistency identification are also

discussed.

Chapter 3: This chapter deals with the existing works in literature re-

garding the JavaScript MVC Frameworks, AngularJS and inconsistency issues

in JavaScript.

Chapter 4: The proposed approach namely FANTASIA is explained in this

chapter. All required procedures, modules and algorithms are also mentioned in

the following sections of this chapter.

Chapter 5: The implementation of FANTASIA and existing tool AUREBESH

are explained in this chapter. A fault injection study and a comparative result

analysis between FANTASIA and AUREBESH are also discussed in this chapter

Chapter 6: It is the last chapter that contains a discussion about the proposed

approach, important threats to validity and some future directions.

9

Chapter 2

Background Study

This chapter comprises the initial terms and terminology associated with this

research project. It helps to understand the research work properly. First few

sections includes JavaScript and its importance, concept of MVC patterns, web

application framework and JavaScript MVC framework. Since the research work is

based on AngularJS, the rest of the sections contain more details about AngularJS

framework. Those section comprises introduction to AngularJS, modules and

features of AngularJS, AngularJS style guides and best practices, inconsistency

issues in AngularJS applications and application of inconsistency identification.

2.1 JavaScript

To develop both client-end and server-end application, JavaScript has become the

most popular programming language for the developers. It is a dynamic inter-

preted programming language that almost follows the syntax of C programming

languages. It gives developers the flexibility to write code without following any

strict typing discipline. It contains some important features that are increasing its

popularity. Some of the most favorite features are, creating dynamic objects that

can be modified at run time, the literal notation which is used to declare objects

and arrays by listing their components [3] and loose typing variables, functions

10

and object declarations. However one of the most important features is first-class

functions that allow developers to pass a functional expression as parameters or

return functional expression as values. JavaScript is object oriented program-

ming languages that allow an object to get some properties from another object

by following prototypical inheritance. It also allows the developers to follow the

functional programming style to do functional programming.

Initially, JavaScript was designed as a scripting programming languages. It

is embedded in a web page with few codes to extend functionalities. With the

increasing number of devices, JavaScript is now being used developing both the

mobile application and native desktop application development. For these different

types of applications, better user interfaces and experiences are needed. Technol-

ogy that contributes to the improvement of better user experiences is called AJAX.

It allows to communicate and interchange the data between the server-end and

client-end asynchronously without interfering the display and the functionality of

the web pages

2.2 The Model-View-Controller Pattern

The Model-View-Controller (MVC) is known as an architectural pattern that was

first introduced by Trygve Reenskaug in 1978 [8]. It was considered to be a solution

that helps user’s mental model .By associating with the domain of the application

it enables them to inspect and modify their information [7]. That time the MVC

pattern was used as an approach to representing information, display and control

for the set of reusable system components used by programming environment

[9]. MVC pattern allows developers to structure applications that encourage the

separations of reusable components to represent

• The application domain data in the form of the model.

• The way to serve application data to the user.

11

• The way how a user can interact with the domain data model.

There are three major components of MVC architectural patterns. The compo-

nents are the model, view, and controller. The detail description of those three

components is presented below.

1. The Model: Model is the representation of application domain or knowl-

edge. It is the part of the application that contains the actual data. It

may contain a single object or a structure of complex objects. The model

also contains logics such as validations and access control. The model is the

actual heart of an application, and without it, the application will not work

[10].

2. The View: A view is the visual representation of its model data. It gener-

ally focuses the certain attributes of the model data and suppresses others.

Thus, it is treated as a presentation filter. It is attached to its model to get

necessary data for the external representation by asking questions. It may

also update the model data by sending appropriate messages. The questions

and messages have to be in the terminology of the model. Therefore, the

view will have to know the semantics of the model attributes [10].

3. The Controller: A controller is a link between a user and the system.

It provides the user with input by arranging for relevant views to present

themselves in appropriate places on the screen. It provides means for user

output by presenting the user with menus or other means of giving commands

and data. The controller receives such user output, translates it into the

appropriate messages, and pass these messages to one or more of the views

[10].

12

2.3 Framework

A software framework is a set of source code and libraries that provide help to the

developer when coding. A framework can help with a lot of different aspects of an

application such as data storage, security and user interfaces [11]. For example, a

security framework can be used for an application. The developer will not need to

implement the authentication and authorization functionality since it is already

implemented and provided by the framework. The developer will only need to

use the supplied component that has the required functionality, and may make

smaller changes to fit the application.

A web application framework is a type of a software framework that helps

developers specifically when developing web applications [12]. There are many

different frameworks available that all are designed to fulfill some requirements.

Frameworks can be applied to many areas such as education or health care, but

in this research, the focus is on software engineering and more specifically web

programming

2.4 JavaScript MVC Frameworks

To build a small and light website or applications on the client end, plain JavaScript

is used for most recurrent requirements such as AJAX communications, DOM ma-

nipulation, etc. However, web applications are developed to manage a large quan-

tity of data with a better user interaction and interface. Therefore it is necessary

to use and write a significant amount of code for satisfying those requirements.

To deal with low-level API, abstract interaction with DOM, and complex way to

use AJAX calling, Jquery [13] was created to provide a better solution. Even,

when developing large web applications with complex user interaction, it is not

expected to load the full page for every page request. It can be done using the

DOM manipulation libraries. However, the DOM manipulation libraries cause a

13

big amount of nested and unmaintainable code without any structure. As a result,

JavaScript MVC framework was emerged to provide a basic way of organizing the

applications code in a maintainable way [14].

JavaScript MVC frameworks are proposed to acclimate the MVC architectural

pattern to provide an abstraction layer which simplifies the implementation of

separation of concerns. The separation of concerns refers to the code for each of

these concerns separate. Changing the interface should not require changing the

business logic code, and vice versa [15]. At present, a large numbers of JavaScript

MVC frameworks is created for fulfilling applications requirement in various ways.

The top most used JavaScript MVC frameworks are AngularJS, BackboneJS, and

EmberJS [16]. These frameworks are similar to each other and the concept of

using models, views, and controllers. The oldest framework is EmberJS which

is developed in 2007. The recent frameworks are AngularJS and BackboneJS

developed in 2009 and 2010 respectively [2]. These are represented in on-line to

open source community. The community provides help to each other and finds

problem solution.

2.5 Modules and Features of AngularJS

AngularJS is a client-end web application framework famous for developing Single

Page web Application (SPA) [1] development based on JavaScript programming

language. It is developed and maintained by Google. It follows the MVC archi-

tectural frameworks for developing web applications. It is an open source and

completely free for developers to use. AngularJS is licensed under the Apache

License Version 2.0 [2].

1. Modules: An AngularJS application is developed by using a set of mod-

ules. The modules are considered as a container to the various part of the

application. Those are created as a reusable component of the application

14

[17]. Modules may depend on other modules. Modules may take another

module as its dependencies. It is defined by using the methods of modules.

Those methods are defined by the AngularJS.

2. Services: An AngularJS service is an object which allows encapsulating the

functionalities associated with a specific concern. It follows some design pat-

tern such as singleton, factory, and constructor. Singleton is meant that an

object has only one instance at a time. Service is instantiated as a singleton

by using factory or constructor function provided by AngularJS. All the dif-

ferent components that depend on services may share the created singleton,

for example, controllers, directives, filters and other services. To use a ser-

vice by other components of the application, the name of the service must be

specified inside that components and AngularJS inject the service into that

components for its usage. These services are stateless objects holding a set

of methods to interact with various aspect of the applications for example

server request, manipulations of arrays, asynchronous operations, etc. The

separation of concern is the primary purpose of the services. There are few

built-in services provided by AngularJS to deal with the common interest in

the development of applications such as $http, $filter, and $timeout [17].

3. Template: In a web application, HTML is used to define the structure of the

document to the user. The HTML documents are parsed by the browser for

generating Document Object Model (DOM). It models the actual document

presented to the user. For modifying, styling the document, the DOM can

easily be accessed dynamically through program and scripts. AngularJS uses

this fact for supporting the DOM-based templates [17]. These templates are

based on HTML containing the necessary elements and attributes to render

dynamic interface which a user sees in the browser window. Figure 2.1

shows a sample template. It includes the definition of the document (HTML

15

element in line 1) and the markup for the main input of the application,

which is represented by the form element (line 5).

Figure 2.1: Angular Appication

4. Directives: A specific HTML markers used in the template to define the UI

behavior is known as a directive. Directives are executed by AngularJS and

have the ability to register event handlers, modify the DOM structure. Those

can be found in the templates taking the form of HTML constructs such as

element tags, attributes, CSS classes and event comments. While compiling

the directives, AngularJS traverse the DOM generated by the browser and

searches for all directives. These directives are executed in order of priority

creating the final DOM presented to the user. Directives can (1) use the same

scope of the parent element; (2) create a scope that inherits from the scope

of the parent element, or (3) create an entirely new scope. It is also possible

to create custom directives. By default, a directive utilizes the parent scope

without creating the new scope.However, in many cases, this is not what

[18]it is wanted. If directive manipulates the parent scope properties slowly

by creating new ones, that pollutes parent scope. It is not a good idea to let

all the directives use the same parent scope.The reason is that anybody can

modify scope properties. So, the following guidelines may help developers

choose the right scope for building custom directive.

• Parent Scope: This is the default case. If directive does not manipu-

late the parent scope properties, there is no need to create a new scope.

16

In this situation, using the parent scope is considered to be the best

practice [18].

• Child Scope: This creates a new child scope for a directive which

prototypically inherits from the parent scope. If the properties and

functions set on the scope are not relevant to other directives and the

parent, a new child scope should be created. With this, all the scope

properties and functions defined by the parent is available in child scope

[18].

• Isolated Scope: It is needed if the directive is self-contained and

reusable.The directive may create many scope properties and functions

that are always required for internal use .Besides, it should never be

seen by the other components of the application. If this is the case, it

is the best practice to create an isolated scope. It is expected that the

isolated scope does not inherit the parent scope [18].

In Figure :2.1 the ng-app attribute (line -1) is an AngularJS directive that

defines the root node of the application.

5. Expression: AngularJS expressions are expressed by double curly brackets

(expression) or are the values of some directive attributes. Literals such as

arrays ([]), objects (), operators and variables are examples of elements which

can be used in expressions. Expressions are evaluated using a context repre-

sented by an object, called scope. Variables and functions used in expressions

must be defined in the scope object. During the template compilation, when

the ng-app directive is parsed, AngularJS creates an object representing the

main application scope, which is referenced as the rootScope.Since directives

can define different scopes from the rootScope, expressions from various parts

of the template may be evaluated under different scopes. When the value of

an expression changes, AngularJS updates the view accordingly [17].

17

6. Controllers: In AngularJS, controllers are used to managing the state of

applications that related to the presentations. It also provides necessary

interfaces to modify the presentations. Usually, controllers are used with the

ng-controller directives provided by the AngularJS. When controller directive

is used inside a template, it takes the name of the controller. Besides a new

scope created with this controller directive that passes as a parameter of

specified controller. The responsibilities of the controller functions are to

populate the new scope object with properties and methods which will be

available in the template for the evaluation of expressions [17].

7. Digest Cycle: AngularJS consistently maintains in sync the state of the

application with the view presented to the final user. The framework pro-

vides this synchronization by comparing the current value of all variables in

the scope referenced by the template expressions with their previous values.

When a change is detected, the framework adequately updates the DOM, in

a process known as digest cycle [17].

2.6 AngularJS Style Guides and Best Practice

Style Guide: A style guide (or manual of style) is a set of standards for the

writing and design of documents, either for general use or a specific publication,

organization, or field. A style guide establishes and enforces style to improve

communication. To do that, it ensures consistency within a document and across

multiple documents and enforces best practice in usage and language composi-

tion, visual composition, orthography and typography [19]. Google provides an

official AngularJS style guide and the best practices, but the most accessible and

comprehensive guides are from the AngularJS community [19].

• Minko Gechevs AngularJS Style Guide

18

• Todd Mottos AngularJS Style Guide

• John Papas AngularJS Style Guide

It is hard to say that which is the best style guide .The reason is that they are all

good style guides. John Papas guide is comprehensive and evolving, Todd Mottos

is concise and excellent to start, and Minko Gechevs is translated in different

languages. However, it seems that John Papas style guide has been recommended

officially by Google by the most current and detailed AngularJS Style Guide. The

following principles [20] are the most important AngularJS-specific points in the

Jonh Papas style guide - The LIFT Principle

1. Locate the code quickly

2. Identify the code at a glance

3. Keep the Flattest Structure

4. Try to stay DRY (Dont Repeat Yourself)

2.7 Inconsistency Issues in AngularJS

AngularJS is susceptible to consistency issues for the abstract interaction among

the modules. To represent functionality of an application, it depends on the use

of identifiers. So, the definition and use of these identifiers are required to be

consistent across associated modules. Since JavaScript is loosely typed dynamic

programming language, the developers have to keep in mind that, values assigned

to the model data and returned by the controller functions, should be consistent

with their expected types. Inconsistencies among these identifiers and the types

can potentially incur a significant loss in the functionality and performance. The

reason is that the major features of an application rely on the controller functions

and the model data. Moreover, developers declared some model variables and

19

controller functions though these are not used in the view. It makes the code smelly

with redundancy. It also reduces the readability and understandability of the code.

Besides AngularJS supports the DRY (Dont Repeat Yourself) feature. It refers,

just creating one directive and using it anywhere within the entire application.

Despite having a lot of built-in directives, it also enables the developer to create

custom directives to improve the understandability and readability of the code.

Every custom directive has some specific properties that define its template view,

model, and controller. Sometimes, it is also used inside a view under a particular

controller by following parent-child relationship. While using custom directives,

inconsistency may arise not only within its own, model, view and controller but

also between its parent view and controller

2.8 Application of Inconsistency Identification

It has been observed in some studies that almost 65% of the faults and bugs

in JavaScript are related with DOM API methods call [4]. The DOM API is

the origin of inconsistency due to the wrong interaction between DOM object and

JavaScript code. This inconsistency is acute in the presences of a JavaScript DOM

manipulation libraries. The reason is that it abstracts the DOM API method call

between the web pages and JavaScript codes.

AngularJS framework depends on identifiers of model variables and controller

functions to represent the functionality of the modules such as model views and

controllers. Inconsistency among those identifiers may cause hidden bugs in the

applications. Since these modules communicate with each other via data, any

data type inconsistency may result in unexpected behaviors in the application

without showing any error [4]. Besides, it has been observed that sometimes

developers expose some model variables and controller functions that have never

been used in the view. It not only creates redundancy but also increases the line

20

of code and impairs the code understandability. It is hard to detect identifier

and data type inconsistency along with redundancy when an application contains

multiple models, views, controllers and custom directives. Developers have to

perform manual inspections to find this inconsistency. Identifying inconsistencies

in AngularJS MVC applications is really needed to reduce application faults. This

research will assist developers to accelerate their application development. The

reason is that it helps the developer to automatically detect inconsistency without

manual inspection.

2.9 Summary

A brief description of JavaScript, MVC frameworks, has been discussed in this

chapter. Besides, AngularJS, a various module of AngularJS are also described

precisely. Inconsistency issues in AngularJS applications, the effect of inconsis-

tency in the application development are mentioned in this chapter. Existing

approach and other related works on AngularJS are discussed in the next chapter.

21

Chapter 3

Literature Review

AngularJS has gradually been developed for the last couple of years; significant

work has not been found on AngularJS. Moreover, no early work has been found

that discusses consistency issues in AngularJS applications to the best of author

knowledge. However, few works address MVC pattern appliance in the clientend

application development. Besides, few more works are found that rigorously dis-

cuss the DOM-related faults and errors. By analyzing those works, it is observed

that most of the JavaScripts faults are DOM related. Moreover, and the primary

reason of the DOM-related faults is an inconsistency between the JavaScript code

and the DOM element. Two works are found that discusses inconsistency issues

in JavaScript application. Several survey studies are also conducted on AngularJS

to find the standard errors and best practices that are followed by the developers.

Based on all of those works knowledge domain of this research work is categorized

in four section

• Application of MVC Pattern

• DOM-related faults in JavaScript.

• Inconsistency in JavaScript.

• Survey Study on AngularJS.

22

This chapter contains the use of MVC pattern for developing client-end applica-

tions is discussed. It contains the appliance of MVC pattern for developing fixable

web application, and meme media technologies. The next section deals with the

DOM-related errors and faults in JavaScript application. An empirical study along

with different types of approaches are also discussed in that section. The following

section contains the inconsistency issues arise in JavaScript application. The last

section comprises with survey studies conducted on AngularJS.

3.1 Application of MVC Pattern

MVC is an architectural pattern previously that has been applied to the server end

of a web application. The controller and the model are implemented on the server-

end, and the view is represented by the output of the application to the client-end.

Besides, the use of MVC pattern in client-end has been recently introduced, so

there is only a few papers and works addressing the topic. Most of these works

discuss the application of MVC pattern on JavaScript application. Avraham Leff

et al (2001) introduced Flexible Web-Application Partitioning where developers

may apply MVC pattern in a partition-independent manner [21], Behnam et al

(2011) introduced a very simple design pattern for Rich Internet Application (RIA)

based on MVC design architecture, [22] and Jun Fujima [23] et al. suggested a

prototypical implementation of a meme media platform with a modern JavaScript

framework [23]. Those works are elaborately discussed below below

3.1.1 Flexible Web Application Partitioning

MVC architectural design pattern is an effective way to build interactive applica-

tions. It is also known as Presentation Abstraction Control (PAC) design pattern

[24]. It decouples the applications business logic from the user interface. The

Presentation is comprised with MVCs View and Controller and the application’s

23

data known as Model is termed as Abstraction. The Control component does the

communication between the Presentation and Abstraction component.

The use of both PAC and MVC design pattern makes it flexible to build and

maintain applications. The reason is that the applications look and feel can be

changed without changing the business logic and applications data. However, there

are problems to use MVC design pattern for developing web applications as web

applications are intrinsically partitioned between the client-end and server-end.

Three types of deployment architecture are followed such as thin-client, fat-client

and dual-mvc. When the View is provided from client-end and the Model and

Controller are provided from the server, this approach is called thin-client. In fat-

client approach, the Model, Controller, and View are also provided from client-end.

For dual-MVC approach, both the Controller, Model reside on both the client-end

and server-end.

Avraham Leff et al. (2001) [21] introduced Flexible Web-Application Partitioning

where developers may apply MVC pattern in a partition independent manner.

By flowing the Flexible Web Application Partitioning, the application can be

developed and tested in a single address space along with deployed various client-

server architecture without changing the applications. It also helps to take and

change partitioning decisions without modifying the applications.

3.1.2 Meme Media Technology

In recent web applications, World Wide Web (WWW) is a potential platform.

With the separation of the next generation of HTML, known as HTML5 gets the

popularity of the World Wide Web Consortium (W3C). Therefore, for building a

rich web application, separated web-based state of the art technologies becomes

the first choice of the developers. With those modern technologies, developers can

implement rich web applications. The purpose of the developing Meme media [25]

technology is to provoke and support the evolution of the knowledge and technol-

24

ogy and the Internet. It provides media objects which were known as memes first

introduced by Dawkins [23]. It allows users to modify and redistribute different

knowledge and resources wrapped by media objects. The user can combine media

objects through manipulation of those for example drag and drop or copy and

paste to compose new objects without any coding. By using this features, when

one user may upload a new media object on the computer network another user

may download it and reuse it. Moreover, another user may combine the object

with another object to compose new object to publish it to the network. With

this cyclic process of the user interaction with these meme media objects, various

types of meme media objects are accumulated on the network.

Jun Fujima et al. [23] explore the possibility of meme media platform with sim-

ple Web technologies that are available to more different types of devices. The

implementation of client-side media object and functionalities such essential me-

dia object architecture and combine the media objects are focused on this work.

In the recent JavaScript development, there are some problems with the com-

patibility among different browsers and over flexibility. To avoid the complexity

researcher chose a base JavaScript framework AngularJS for developing a struc-

tured web application. The researcher using AngularJS developed a prototypical

implementation of meme media platform. Also, several media objects are prepared

on a different platform and tested operation of them on multiple Web browsers.

The reason is that they used only pure HTML and pure JavaScript to implement

the platform .Moreover, they develop the platform that works on modern Web

browsers that support latest HTML5 and JavaScript specifications.

3.2 DOM Related Faults in JavaScript

The recent web application gets information asynchronously from the server-end

without reloading the whole web page. This approach is much more user inter-

25

actives from than traditional web applications. By the use of JavaScript at the

client -end this interactivity is accomplished. JavaScript allows the creation, mod-

ification and delectation of the node of the tree data structure namely Document

Object Model (DOM).DOM is a data structure like a dynamic tree that represents

the hierarchy of HTML elements and their properties in the web pages. Almost

97 of the top 100 most visited websites [26] and web applications use JavaScript

at client-end for better user interaction. JavaScript is a weakly typed program-

ming language that supports execution of new code at run time. It is observed

that this factor leads to many programming errors. Moreover, the web browser

is enduring to errors in JavaScript code, though those are different in the event

of error handling. When an exception occurs in JavaScript code, web browsers

do not stop executing rather those continue executing in response to user events

and notifications. For this reason, it is difficult to find JavaScript bugs and errors

during testing. bugs and errors during testing

3.2.1 JavaScript Errors in the Wild

In a research work, Frolin et al. (2011) [27] tried to conduct an empirical study

based on an error in JavaScript based web applications and categorize the standard

errors in these applications. The sources of these errors were also analyzed by

performing the dynamic and static analysis. Another objective of this research

was to provide guidelines and principle that helps developers and testers enhance

their web applications readability. In a JavaScript based web application, an error

may have different results with a loss of its functionalities. It is necessary to

study the readability of the JavaScript code to understand the errors occurring in

the web applications. The study was based on the error message printed to the

JavaScript console while executing the application in the browser. Firebug was

used to capture the message. The error messages were analyzed and categorized

and also correlated with the web applications with the types and frequencies of

26

the error message to understand their relationship. The outcome of the work was,

a systematic approach to executing web applications in different testing mode

and categorize the error messages. The method was implemented as a tool based

on the existing approach. The tool was also run on 50 of the 100 most visited

websites to study and characterize the errors. It was found that almost 93% of

the errors fall into one of four categories: Permission Denied (52%), Undefined

Symbol (28%), Null Exception (9%), and Syntax Errors (4%).

3.2.2 AutoFlox

Testing is the most generic way of acquiring confidence in software reliability. On

the other hand debugging of the web application is considered to be most expensive

and manual task. However, locating the faults or fault localization is still the most

expensive among other activities of the debugging process. The fault localization

process starts when developers observe an error in the web applications in an

automated testing or manual inspections. After that developers try to understand

the cause and the nature of this errors . It is done by reviewing the JavaScript code

and examining the DOM tree. After getting the fault, developers modify the code,

run the application and go through the navigational actions the lead to the wrong

state or execute the test case. It is hard and time-consuming for the developers

to inspect the JavaScript errors manually. The reason is that JavaScript is loose

error detection semantics and loosely type with dynamic nature. Therefore, an

error may remain undetected in the application for a long time before triggering

an exception. Besides errors may arise because of the asynchronous and dynamic

interaction between the JavaScript code and DOM tree that makes it difficult to

understand the cause of the error. Finally, errors may occur while using third

party code such as libraries, widgets, etc.

Ocariza et al. (2012) [28]conducted a study over 29 openly available JavaScript bug

reports from four open source web applications such as TUDU contains 9 bugs,

27

TASKFREAK contains 10 bugs; WORDPRESS contains 11 bugs, and Google

contains 12 bugs. The key challenges to perform the study was to get the available

bugs. There are very few web applications publish their bug database. After

analyzing, the bugs were categorized into five types such as

• Code-terminating DOM-related.

• Output DOM-related.

• DOM-related error of unknown kind.

• Non-DOM-related error.

• Output DOM-related.

• Unknown JAVASCRIPT error.

An automated technique was proposed that lessen the difficulties with manual

web fault localization. The techniques were developed on dynamic backward slic-

ing of the web application to localize the JavaScript faults. The fault localization

technique was implemented in a tool namely AUTOFLOX. It is evaluated on three

open source web applications and a production application. The outcomes of this

work are given below

• Identifying DOM-related JavaScript faults are considered to be a new prob-

lem space.

• For locating the DOM-related errors in JavaScript code, an automated tech-

nique is developed.

• AUTOFLOX, an open source tool that implements the proposed fault local-

ization technique.

• An empirical study that examines the proposed approach and its efficiency

in real world relevance. The study indicates that DOM related errors from

28

the majority of reported JavaScript errors. About 79% of the reported

JavaScript errors are the DOM related.

3.2.3 Empirical Study

Most of the time JavaScript code is written to interact with the DOM. JavaScript

can access the DOM and modify the DOM dynamically using DOM API meth-

ods that may change the content of web pages without reloading the whole page.

Though these features make the web application highly interactive, it causes ad-

ditional faults in JavaScript code.

A study is conducted by Karthik et al. (2013) [4]to collected console message

from 50 popular web application to understand and explain how JavaScript faults

occur and what kinds of faults appear in the web applications. It is found that on

average four JavaScript console message appear in these modern web applications,

and these messages were falling in five different categories. However, that study

did not explore the cause and did not analyze the types of faults. It is important

to the developers and testers to understand the reason using a dynamic analysis

tool to increase the reliability of web applications.

An empirical study was performed on 300 JavaScript bug reports .The re-

searchers were interested to discover the cause of JavaScript faults .They analyzed

these to find their consequences. The bug reports were chosen on the basis of how

the applications behave when faults occur.So, the main challenges are to study the

bug reports. However, 317 bug reports are collected from 8 web applications and 4

JavaScript libraries. After conducting the study, researcher categorized the faults

in five different classes. It is found that most of the faults were related to DOM-

related faults. The causes and effects of these faults are analyzed. Their result

showed that almost 65% of JavaScript faults are DOM-related faults that occur

because of the wrong interaction of JavaScript code and DOM element using in-

correct identifier. Moreover, it was found that DOM-related faults are responsible

29

for 80% of the highest impact faults in the web application. It was also observed

that majority of faults occurs due to JavaScript code instead of server-end code.

Besides, few coding patterns lead to raising these faults.

3.2.4 Vejovis

JavaScript applications are proms to errors because of its dynamic nature. An

empirical study [29] shows that around 65% JavaScript faults are associated with

DOM-related faults that occur because of the wrong interaction of JavaScript code

and DOM element. Besides it is found in the study that about 80% of the highest

impact of JavaScript faults are also DOM-related faults. Moreover, it is observed

that DOM-related faults require more time to fix.

In this research work, the primary goal of the researcher was to propose an

approach that facilitates the process of fixing the DOM related JavaScript faults

by providing the recommendations during web application testing and debugging

task. First, it was observed on many DOM-related faults to find the typical pat-

tern on how developers fix the DOM related bug during application developments.

After that, an approach was proposed that automatically fixes the DOM-related

faults. The approach included the combination of both static and dynamic analy-

sis to identify the lines of codes through backward program slicing for getting the

assignment values of DOM elements. After getting the lines, a string solver was

used to find the candidate replacement DOM elements and propagate the values

along with backward slice to find the fix. The approach was implemented as an

open source tool named VEJOVIS. It was deployed on a web application after

the occurrence and subsequent localization of JavaScript faults. Some common

types of DOM-related faults were categorized by the researchers based on 190 bug

reports. It was found that modifications of DOM method or property or assign-

ments values into valid replacements values are the most common faults.

All those works are directly related to DOM related errors and faults. However,

30

they are only capable of finding DOM-related faults in native JavaScript web

application. These approaches are not capable of finding inconsistencies in Angu-

larJS applications since they omit the presence of the JavaScript MVC framework

applications.

3.3 Inconsistency Issues in JavaScript

JavaScript makes developers not to annotate their programs with type information

or to follow any strict typing discipline. This practice helps the developer to write

many lines of code within a short period. Although these are beneficial features of

dynamic programming, the freedom provided by dynamic programming languages

often causes some hidden bugs. Since the dynamic programming language does

not impose developers for any typing discipline. No compile-time warnings are

reported if a program has data type’s inconsistency. Even sometimes, many dy-

namic languages silently compel values from one type into another type that leads

to the incorrect application behavior without showing any obvious sign of errors.

3.3.1 Type-Devil

Michael et al. (2015) [5] deal with a data inconsistency problem of dynamic

programming languages. For easily understanding this problem, an example is

provided with a small code block along with a clear explanation. Figure 3.1

shows a block of code. Two functions are described namely addWrapped(x,

y) and Wrapper(v). It is observed that addWrapped(x, y) function takes two

parameters (e.g. x, y) as objects with a property v. If the second parameter

namely y exists, the function returns the sum of the property (v) of those two

parameter objects. If only one parameter exists, then the function returns only

the parameter’s object property namely v. Another function named Wrapper (v),

wrap a number property v within an object.In JavaScript, this type of function

31

is called Constructor function that instantiates an object. There are two ways

for instantiating these parameters as objects.Developers may instantiate objects

using the Wrapper () constructor function (e.g. new Wrapper (5)), or using the

JavaScript object notation such as v: 5.

Figure 3.1: JavaScript type inconsistency example

In line-10, the function is called, and it returns only 23 as it takes one parameter.

So it returns the object’s property with a name v. In line-11, the constructor

function is also called, as expected it also returns 23 as it takes two parameters

by instantiating two parameters objects with two different approaches. However,

when the function is called in line 12, it takes two parameters where the property

of first parameter object is a string instead of a number. So while calling the

function, it concatenates the properties of those two parameters object and returns

185 instead of 23.

For identifying these types of inconsistency issues for dynamic languages re-

searchers propose an approach named TypeDevil as a tool that detects such prob-

lems by dynamically analyzing the program and by reporting variables, properties,

and functions that have inconsistent types

The approach has three steps; it starts with gathering the Type observation.

In JavaScript, data types are considered structural types. On the other hand,

the approach represents data types as a record of typed properties. Here Type is

either a primitive type (Boolean, Number, String, Undefined, or Null) or a record

type that maps named properties to sets of types. A record type represents one

32

of the four types object type, array type, function type, and frame type, where

properties represent local variables of a function. Two types are the consistent

type if both types are the same, if both types are structurally equivalent, or if

one type is a structural subtype of the other type. There is a dynamic analysis of

source code that gathers the observation of each variable, properties and functions.

It instruments the program by adding code that records the type of each reference.

This approach adds code in different instrumentation points of the source codes.

The researcher mentions six instrumentation points for adding code such as object

literals, get property and put property, function literals, function calls, function

enter and exit, and variable reads and writes.

After gathering type observations at runtime, all observations are merged into

a type graph. The type graph of an execution of a program is a directed graph.

The nodes represent types observed during the execution. An edge represents

that the property p of type t1 that has been observed to point to a value of type

t2.The final step of this approach is to report type inconsistencies. Initially, the

analysis considers each property of a type as inconsistent where the type node

has more than one outgoing edge labeled with this property. For evaluating the

effectiveness of TypeDevil, they apply the approach to real-world web applications.

It effectively finds inconsistent types, many of which correspond to problems that

programmers should be aware. In total, the analysis reports 33 warnings, of

which at least 15 correspond to problematic code. TypeDevil is complementary to

JavaScripts strict mode, which warns about potential programming errors. None

of the problems detected by their analysis are found with strict mode

This approach may detect these type inconsistencies by analyzing JavaScript

code dynamically. It is applied on different JavaScript files within web applica-

tions to show that this approach may find type inconsistencies dynamically. It

may find type inconsistency in JavaScript codes that are written in non-strict

mode. This approach can only be applied to the JavaScript files and may detect

33

type consistency within the JavaScript files. However, it cannot find inconsis-

tency in AngularJS MVC applications. The reason it that to find both type and

identifier inconsistency in MVC application, both the controller JavaScript file

and view HTML file should be considered. This approach does not consider the

inconsistency between the HTML and JavaScript files.

3.3.2 Aurebesh

There are few popular JavaScript-based MVC frameworks used by the developers

such as AngularJS, BackboneJS, EmberJS, and ReactJS. Among all the frame-

works AngularJS is the most popular frameworks [30]. The main purpose of using

these frameworks is that it abstracts DOM API method calls between the con-

trollers and views. Unfortunately, MVC frameworks are susceptible to inconsisten-

cies between the identifiers and types of variables and functions used throughout

the application. Specifically, these frameworks depend on the use of identifiers

that represent model objects and controller functions. Defining and using of these

identifiers are expected to be consistent throughout all the related models, views,

and controllers. The developers have to keep in mind that the values assigned

to model objects and returned by controller functions are consistent with their

expected types, considering that how it is used. As model objects and controller

functions are used to represent major functionalities of the web application, so any

inconsistencies between these identifiers and types can potentially lead to a sig-

nificant loss in functionality and performance. These inconsistencies are difficult

to detect when multiple model-view-controller groupings exist in the application.

Besides, developers do not get any exceptions and warnings provided in the event

if any inconsistency occurs

To detect inconsistency in JavaScript MVC application recently an approach

has been proposed by Frolin et al. (2015) [6]. It contains two types of incon-

sistencies namely identifier consistency and type consistency. This approach may

34

identify both types of inconsistency in JavaScript MVC application. The approach

is implemented as a tool named AUREBESH that may detect inconsistency by

performing static code analysis. A fault injection study is conducted into 20 open

source AngularJS applications considering to be representative of JavaScript MVC

application. The researcher found 15 real bugs and 11 error message generated by

the AUREBESH. It is observed that among the 15 bugs, 13 bugs are identifier in-

consistency and rest of the two bus are type inconsistency. Besides, four patterns

are found by analyzing these 15 bugs for example.

• Identifier defined elsewhere (7 cases),

• An Incorrect identifier (5 cases),

• Boolean assigned a string (2 cases)

• Identifier name not updated (1 case).

However, while using custom directives in AngularJS applications, this approach

cannot detect inconsistency. The reason is that it omits the presences of custom

directives in the AngularJS application. Recently, AngularJS applications are

written by following angular style guide [31]. This approach also fails to detect

inconsistencies in these applications that were developed according to the angular

style guide.

3.4 Survey Study on AngularJS

According to Google trend [26], AngularJS is the most popular JavaScript frame-

work. Besides it has been observed in a study that AngularJS is being grown

over the last few years. Until 2015 July, there are 32K Git-hub repositories, 75K

Stack Overflow questions, and 120K YouTube videos based and on AngularJS ap-

plication [14]. In spite of having a lot of resource on AngularJS, there is no clear

35

knowledge of how this framework affects the development experiences of JavaScript

software by providing proposed design and features. There are some specific issues

that are not clear to the developers such as what are the most important features

of AngularJS, what are the common and critical problems faced by developers and

which aspects of AngularJS can be improved. In this research work, researchers

try to find the answer to these question by conducting a survey study on 460

JavaScript developers [17]. Developers who never used JavaScript MVC frame-

works may understand the benefits and common problems associated to use by

reviewing the case of AngularJS. Besides developers who have already used An-

gularJS frameworks, may able to learn how to use this framework more efficiently

by following best practices and avoid bad AngularJS programming pastises. The

study also reveals the relevant features of the AngularJS such as dependency in-

jection, custom components, two-way data binding, and also the most frequent

problem faced by the AngularJS developers, API complexity, etc.

In an early work, it is found that there are two types of inconsistency that may

occur in JavaScript MVC framework. The first one is identifier inconsistency, and

another is data type inconsistencies. Identifier inconsistencies occur when identifier

used in one layer are undefined in the lower layer. Types of values assigned to a

variable, or returned by a function that does not match with their use in the view

are responsible for data type inconsistencies. The researcher observes that both

types of inconsistencies are not easily caught during the development especially

working with the multiple layers. The existing tool namely AUREBESH that

automatically identify these inconsistencies. However, in this survey study, it is

found that only 39% of the respondent consider that silent failure, corresponding

to identifier inconsistencies, are real problems during development [17]. Besides

84.5% of the respondent considered that two-way data binding related to type

consistency as a valuable feature. These results reflect over the real problem while

using AngularJS frameworks.

36

3.5 Summary

The automatic inconsistency identification technique helps the developers to find

the inconsistency among the modules of the applications easily. Inconsistency

among the modules creates hidden bugs and developers need to perform a manual

inspection to identify the inconsistency. Therefore, research field to automati-

cally identify inconsistency in AngularJS applications is really needed. Various

approaches are also developed by the researchers. However, those approaches are

not supported to deal with the AngularJS new features and cannot find incon-

sistency in the presence of custom directives. The proposed technique will be

discussed in the next chapter.

37

Chapter 4

Fantasia: An Automatic

Scafolding and Inconsistency

Identification Tool for AngularJS

1.x MVC Applicatinos

In this chapter, an approached is proposed that can identify inconsistencies in

AngularJS 1.x MVC applications. It is mentioned in the previous chapter that ex-

isting approach can detect inconsistencies only for the older version of AngularJS

applications. Moreover, it also omits the presence of custom directives in those

applications. The recommended angular coding style guides and the new features

of AngularJS are not supported by the existing tool. It is officially recommended

for the developers to follow recommended coding style guides and new features

of AngularJS [2]. It is also recommended to create custom directives while de-

veloping loosely coupled modules and applications [2]. So, while identifying the

inconsistencies, the presence of the custom directives should be considered. In

order to overcome the above limitation of the existing approach, an automatic

approach namely FANTASIA is proposed and developed that can identify incon-

38

sistencies in AngularJS MVC applications in the presences of custom directives.

The proposed approach is exhaustively described in the following section of this

chapter. component and AngularJS object it is

4.1 Overview of proposed Inconsistency Identi-

fication Techniques

The internal architecture of FANTASIA is shown in the Figure 4.1 . The architec-

ture contains seven small components where each component performs predefine

responsibilities. The information flow and the activity of each component are de-

scribed below.

1. Route Extractor:In AngularJS MVC applications, the inconsistencies oc-

cur between the correspondent view and controller, primarily it is required

to identify the correspondent view and controller files. It is needed to ex-

tract the configuration file for getting the controllers and views that are

correspondent to each other. The reason is that in the configuration file,

the route configurations are defined where the corresponding view and con-

troller names are mentioned. Route Extractor extracts the configuration

file and finds the correspondent view and controller module files. Finally,

it passed those files into the next component. A procedure namely GetIni-

tializedMvcGroup is implemented within the Route Extractor component.

The procedure makes an empty mvc group list with the controller, view file

names and contents.

2. Component Extractor: After getting the required module files, it is the

responsibility of the Component Extractor to categorize the files in various

modules and read the data of those files. The categorized data is feed by

39

the next two components namely View Extractor and Controller Extractor.

3. View Extractor:View Extractor gets view code from the component ex-

tractor. It extracts the view html code and generates the DOM. From the

DOM, it finds the model variables and controller functions that are used

in the view using an Angular expression or AngularJS built in directives.

The accepted data types of AngularJS directives are also gathered where

the model variables and controller functions are used. Finally, it finds the

custom directives whether that are used in the view. If custom directives are

present in the view, it makes a list of custom directives. Then, it provides

the list to the Directive Extractor component.

Figure 4.1: High Level Architecture of Fantasia

40

4. Controller Extractor:Controller Extractor also gets the controller code

as JavaScript code from the Component Extractor. It generates Abstract

Syntax Tree (AST) using the code. After that, it finds all the model variables

and the controller functions that are defined in the controller.

5. Directive Extractor: Directive Extractor gets the directive list from the

View Extractor. It gets the required directive code and finds the type of this

directive. Based on the type, it extracts the directive code and gathers the

required view and controller that are used in the directive. An algorithm

namely Extracting Custom Directive is implemented within the Directive

Extractor component. The algorithm extracts the custom directives from its

definition file and extracts the associated modules related to this directives.

6. MVC Group Builder: MVC group builders takes input from the above

described components. It collaborates other components and makes the

composite component. It aims to build a list of MVC group where each

group contains the correspondent and associated view, model, controller,

and directive. It is the complete mvc group that is required in the next step.

A procedure namely GetPopulatedMvcGroup is implemented by collaborat-

ing the View Extractor and Controller Extractor, and Directive Extractor

components to build the complete mvc group.

7. Inconsistency Identifier: The last component is Inconsistency Identifier.

It takes the complete mvc group as input. Finding the inconsistencies in each

element of the group is the responsibility of this component. An algorithm

namely Identifying Inconsistency is implemented in this component.

It is seen that the proposed technique comprises two procedures and two al-

gorithms. The two procedures namely GetInitializedMvcGroup and GetPopulat-

edMvcGroup are used to get the required modules files such as controller, views

and directives and to extract those files. The two algorithms namely Extracting

41

Custom Directives and Identifying Inconsistency are developed to extract the cus-

tom directive if it presents in the application. Finally, identify the inconsistency

among the correspondent controllers and views. These two procedures and the

algorithms are elaborately discussed in the following sections of this chapter.

4.2 Initializing MVC Group

As the proposed technique consider the presence of custom directives; it is required

to build the mvc group with related modules appropriately. The technique starts

with initializing the mvc group by extracting the routing file or the configuration

file

Procedure 1: GetInitializedMVCGroup

Input : A list of files (F) that contains self-descriptive angular modules
Output: A list of MVC Group (groups) where each group contains

model(m), view(v), controller(c), alice(a) and custom
directive(dir)

1 begin
2 groups←− ∅;
3 foreach f ∈ F do
4 if f.extention = config then
5 Ast←− getAST (f);
6 States←− getStates(Ast);
7 foreach s ∈ States do
8 v.name←− findV iew(s.templateUrl);
9 c.name←− findController(s.controller);

10 a.name←− s.controllerAs;
11 groups←− groups ∪ group(v.name, c.name, a.name);

12 end

13 end

14 end

15 end

A list of mvc groups is initialized from the application source files. The list

contains several modules like model(m), view(v), controller(c), alice(a) and custom

directive(d). The model(m) contains list of model variables with the identifier(id)

and data type(type) ,controller(c) contains a list of controller functions with the

42

identifier(id) and return type(type), custom directive (d) contains a list of custom

directives used into the view. The view (v) contains the list of all model variables

and controller functions identifier (id) and the accepted type (type) of angular

expression where these are used.

Procedure 1 starts with initializing empty groups by loop through the source

files. It will find the configuration file from the list of source files. An Abstract

Syntax Tree (AST) is generated from the configuration file using the getAST()

function (Procedure 1,Line:5).The AST contains different states where the related

view and controller names are defined. Using the getStates() function (Procedure

1, Line:6) the states are extracted from AST. For every state, view and controller

names are found using the findView() and findController() function (Procedure

1, Line:8,9) respectively. A new group is initialized by using the view, controller,

alice name and add this into the mvc group list (Procedure 1, Line:11).

4.3 Populating MVC Group

After initializing, it is required to populate the mvc groups with respective model

variables and controller functions identifier with their type. Procedure 2 populates

the initialized mvc group. It takes the list of files (F) and the initialized mvc group

and updates the mvc group with the model variables, controllers, and views. Loop

through into the mvc group; it finds the controller files. An Ast is generated for

every controller file. The list of model variables, controller functions identifiers

and types are extracted from the Ast by using the extractModel() and extract-

Controller() (Procedure 2, Line:6,7) functions respectively. The model variables

and the controller functions contain those identifiers that are defined by the de-

velopers. However, the model variable types and controller function return types

are assumed to be a primitive type such as String, Number, Boolean. However,

the model variables and the return type of the controller functions may contain

43

complex data type with a complex expression. In this case, the type of model

variables and the controller functions are assigned to the unknown type. After

that, the procedure continues by finding the view files and generates the DOM

using the getDOM() function (Procedure 2, Line:10). The DOM may contain zero

or more custom directives. So every custom directive should be identified and

added to the groups custom directive list. The view is also extracted from the

Dom using the extractView() function (Procedure 2, Line:16) and added to the

view list.

Procedure 2: GetPopulatedMVCGroup

Input : A list of files (F) and initialized MVC Group
Output: Updated MVC Group

1 begin
2 foreach f ∈ F do
3 foreach g ∈ group do
4 if f.name == g.c.name then
5 Ast←− getAST (f);
6 g.m←− extractModel(Ast);
7 g.c←− extractController(Ast);

8 end
9 if f.name == g.v.name then

10 Dom←− getDOM(f);
11 if DomhascustomDirective then
12 foreach customDirective ∈ Dom do
13 g.d.name.add(customDirective)
14 end

15 end
16 g.v ←− extractV iew(Dom);

17 end

18 end

19 end

20 end

4.4 Extracting Custom Directives

Each populated mvc group contains, a list of model variables, controller functions,

associated view and a list of custom directives. Algorithm 3 updates the mvc

44

group by adding some new group. This new group is created by extracting the

custom directives. Algorithm 3 is feed with a list of files and the updated mvc

group.

Algorithm 3: Extracting Custom Directives

Input : A list of files (F) and Updated MVC Group
Output: A Complete MVC Group

1 begin
2 directives←− getDirectiveList(F);
3 foreach g ∈ group do
4 foreach d.name ∈ group.d do
5 m←− ∅, v ←− ∅, c←− ∅;
6 file←− findDirective(d.name, directives);
7 Ast←− getAST (file);
8 dir ←− extractDirective(Ast)
9 Dom←− getDOM(dir.templateUrl);

10 v ←− extractV iew(Dom);
11 if dir.scope == false then
12 m←− group.m;
13 c←− group.c;
14 a←− group.a;

15 end
16 else if dir.scope == true then
17 Ast←− getAST (dir.controller);
18 m←− group.m ∪ extractMode(Ast);
19 c←− group.c ∪ extractController(Ast);

20 end
21 else if dir.scope == {} then
22 Ast←− getAST (dir.controller);
23 m←− extractModel(Ast);
24 c←− extractController(Ast);
25 a←− dir.controllerAs;

26 end
27 groups←− groups ∪ group(m, v, c);

28 end

29 end

30 end

It starts with initializing a directive list using getDirectiveList() function (Al-

gorithm 3, Line:2). It contains all the directive files present in the application. For

every mvc group and every directive within the group, a new group is created.The

45

group creation begins with initializing the model(m),view(v)and controller(c) with

empty set (Algorithm 3, Line:5). The directive file is found from the directive list

(directives) using findDirective() function (Algorithm 3, Line:6). An AST is gen-

erated using that file and extract the directive from the AST using the getAST()

and extractDirective() functions respectively (Algorithm 3, Line:7,8). The direc-

tive contains a property named templateUrl that indicates its view file. The DOM

is generated from that file, and the view is extracted from that DOM using the

getDOM() and extractView() function respectively (Algorithm 3, Line:9, 10).

The directive contains a property named scope that indicates its controller

and model. If the scope is false , it refers that this directive does not manipulate

the parent controller and model properties. The parent controller and model

properties can directly be used within the directives.So, in this case, the model(m),

and controller(c) remain same as its parent model and controller (Algorithm 3,

Line:11-14)

If the scope is true, it refers that this directive can prototypically inherit its

parent controller and model and can manipulate them. For this case, an AST

is generated from the controller file that responsible for this directive (Algorithm

3, Line:17). Model and controller are extracted from the AST using the extract-

Model() and extractController() respectively (Algorithm 3, Line:18,19). After

that, they are merged with their parent model and controller and assigned them

to the directives model and controller. When the scope is , it means that the model

and controller of this directive are isolated from its parent model and controller.

For this directive, new model and controller are created. An AST is generated

from its controller file. The new model, controller, and alice are extracted from

that AST. After extracting the directive, a new mvc group is created, and after

that, it is merged with the updated mvc group. By the end of this algorithm, a

complete mvc group is created that is used for next step to identify inconsistency.

46

4.5 Identifying Inconsistencies

Algorithm 3 provides a complete MVC Group by extracting the custom directives.

The approach of Algorithm 4 namely Identify Inconsistency is to compare the

model variables and controller functions in the same grouping. It is done to identify

the potential inconsistencies that exist within the same grouping. The algorithm

starts by searching the inconsistencies related model variables loops through every

model variables that are used in the view and controller (Algorithm 4, Line: 5).

For such all model variables that are defined in the controller, their identifiers are

checked to see if these also exists and are defined to the corresponding

Algorithm 4: Identify Inconsistency

Input : Complete MVC Group
Output: A list of inconsistency (INC)

1 begin
2 INC ←− ∅;
3 foreach g ∈ group do
4 foreach m ∈ group.m do
5 foreach v ∈ group.v do
6 if m.id 6= v.id then
7 INC ←− idMissMatch(m.id, v.id);
8 end
9 else if m.type 6= v.type then

10 INC ←− typeMissMatch(m.type, v.type);
11 end

12 end

13 end
14 foreach c ∈ group.c do
15 foreach v ∈ group.v do
16 if c.id 6= v.id then
17 INC ←− idMissMatch(c.id, v.id);
18 end
19 else if c.type 6= v.type then
20 INC ←− typeMissMatch(c.type, v.type);
21 end

22 end

23 end

24 end

25 end

47

view. The checking is done based on string comparison. If it does not exist

it means either these variables are not used in the view or their identifiers are

inconsistent. So, there exists an identifier inconsistency. So, it is included in the

inconsistency list (INC) (Algorithm 4, Line: 7). However, if the model variable

exists, next the data type of the model variables are checked into the view and

controller. If the data type of the model variables is not the same corresponding

to the view and controller, it means that a type inconsistency is present that is

also included in the inconsistency list (INC) (Algorithm 4, Line: 9). Following the

same process inconsistencies in the controller functions are identified (Algorithm 4,

Line: 15-20). It is assumed that model variables with unknown types are matched

with all types.

4.6 Summary

The chapter exhibits both the high level and low level architecture of the proposed

technique. The internal modules of this technique are briefly described. The infor-

mation flow and the communication among the modules are also discussed step by

step. Two procedures and two algorithms are described exhaustively. The proce-

dures are used to get the required source files and extracted information. Besides,

the two algorithms are needed to extract the custom directive and finally identify

the inconsistency. It is necessary to apply the methodology of this technique to

the experimental data set for measuring the accuracy and the efficiency of the

proposed technique Therefore, the next chapter deals with the application of the

proposed technique on the various experimental data set. The findings and the

result of this experiment are also analyzed in the next chapter.

48

Chapter 5

Implementation and Result

Analysis

The effectiveness of the proposed technique is exhibited in this chapter through

applying it on different real life AngularJS MVC applications. Two algorithms and

two producers are discussed in the previous chapter. It deals with the proposed

technique FANTASIA where the algorithms involved extracting custom directives

and identifying inconsistency. Fifteen different AngularJS applications having

various size are used as experimental dataset. The effectiveness is measured in

terms of number of different types of inconsistencies that can be identified by

the proposed technique. The proposed technique is implemented using JavaScript

programming language so that it can be run on any platform and browser. The ex-

isting technique for inconsistency identification namely AURBESH [6] is also used

for comparative analysis with FANTASIA. The experimental demonstration shows

how the proposed technique may reduce the limitation of the existing technique.

A brief explanation regarding of the implementation environment, experimental

dataset and comparative analysis are also provided in this chapter.

49

5.1 Experimental Setup and Required Tools

This section deals with the appliances that are required for implementing the

approach and also for the experimental and comparative analysis. FANTASIA is

implemented using JavaScript programing language on top of Node.js framework.

Moreover, others tools such as Node.js, Esprima and WebStrom are also needed

for implementing FANTASIA which have been addressed as follows.

1. Node.js:Node.js is a JavaScript run-time built on Chromes V8 JavaScript

engine [32]. However, FANTASIA is platform independent tool since it is

developed by JavaScript and Node.js. It is available as a Node.js package [33]

that can be install using Node.js Package Manager (npm) on any platform.

2. Esprima:Esprima is an open source high performance, standard-compliant

JavaScript parser written in JavaScript. It is used to construct Abstract

Syntax Tree (AST) from JavaScript source code. It provides AST in different

formats such as token based, tree based and syntax based [34]

3. Escodegen:Escodegen is a JavaScript code generator. It takes AST that is

generated by the Esprima and turn back AST into JavaScript code [35].

4. Estraverse:Estraverse is used to traverse and manipulate AST. Traversing

AST is difficult as there is no unified interface for getting the children for

a given node. Estraverse make it easy by using AST generated by Esprima

[36].

5. WebStrom:WebStorm is an IDE (Integrated Development Environment)

built on top of JetBrains IntelliJ platform and narrowed for web development

[37]. The IDE provides support for JavaScript, Node.js, HTML and CSS,

as well as their modern successors. It is used to implement the proposed

technique based on JavaScript and Node.js Framework [32].

50

6. Chrome DevTools:The Chrome DevTools are a set of web authoring and

debugging tools built into Google Chrome [38].

7. System Configuration:

(a) Processor : Intel(R) Core(TM) i3 -3227U CPU @1.90 GHz

(b) RAM: 4GB

(c) Operating System : Windows 10 Professional

(d) System Type : 64-bit Operating System x64-based processor

5.2 Experimental Datasets

In order to measure the accuracy of the FANTASIA, a fault injection study is per-

formed on nine different AngularJS applications such as CafeTownsend,Sudoku,etc

[39]. Among those applications, twelve open source applications are selected from

a list of MVC applications from AngularJS GitHub page [40] specifically, most of

the applications which were chosen to evaluate the existing approach AUREBESH

[6]]. All the applications are refactored into the Google recommended coding style

guide. Besides, the rest of the three applications are also selected from GitHub

repositories that contain custom directives and are also developed by following

angular style guides. The size of the selected AngularJS applications is measured

by Line of Code (LOC) that refers the combined lines of HTML and JavaScript

code, except external libraries.

51

Table 5.1: List of AngularJS MVC applications (absence of custom directives)

No Application Application Category Size (LOC)
1 Balance Projector Finance Tracker 511
2 CafeTownsend Employee Tracker 452
3 Currencies-GH-Page Currency Converter 350
4 Cyptrograpgy Encoder 523
5 Event bus Calculator 690
6 GitHub Contributors Search 459
7 Kodigon Encoder 984
8 Life Stacks Life Style 350
9 Mark Down Html Compiler 150
10 Memory Game Puzzle 181
11 Sliding Puzzle Puzzle 608
12 Sudoku Game 706

Table 5.2: List of AngularJS MVC applications (having custom directives)

No Application Application Category Size (LOC)
1 Shopping List Life Style 511
2 Student Management Management System 452
3 Funny Facebook App Entertaining 350

5.3 Fault Injection Study

To represent the efficiency of FANTASIA, a fault injection study is performed on

the dataset. The injection is performed by initializing a mutation. The mutation is

injected to a line of code in the application source code files. In these AngularJS

application, the source code files are either the HTML files or JavaScript files.

After that, FANTASIA is run on the mutated version of the application and record

whether FANTASIA may identify the inconsistency initialized by the mutation.

If the inconsistency is identified, the result of the injection is noted as Successful,

otherwise Failed. According to Frolin et-al [6], an MVC applications is consistent

if it holds the following four properties.

1. The controller and view can only use model variables that are defined in the

model.

2. The view only uses controller functions that are defined in the controller.

52

Table 5.3: Types of Injected Faults

No Description Property
1 Change the name of a model variable used in line N of a view 1
2 Change the name of a model variable used in line N of a controller 1
3 For a particular model variable used in line N of a view, remove the

declaration of that model variable in a corresponding model
1

4 For a particular model variable used in line N of a controller, remove
the declaration of that model variable in a corresponding model

1

5 Change the name of a controller functions used in line N of a view 2
6 For a particular controller function used in line N of a view, re-

move the declaration of that controller function in a corresponding
controller

2

7 For a particular model variable used in the view that expects a
certain type T1, change the declaration of that model variable in
line N of a corresponding model so that the type is changed to T2

3

8 For a particular model variable used in the view that expects a
certain type T1 and declared in line N of a corresponding model,
change the expected type to T2 by mutating the ng attribute name

3

9 For a particular controller function used in the view that expects a
certain type T1, change the return value of that controller function
in line N of the controller to a value of type T2

4

10 For a particular controller function used in the view that expects
a certain type T1 and returns a value in line N of a corresponding
controller, change the expected type to T2 by mutating the ng
attribute name

4

3. The expected types of corresponding model variables in the view match the

assigned types in the model or controller.

4. The expected and returned types of corresponding controller functions match

in the view and controller

In this experiment, ten types of mutations are considered that are illustrated in

Table 5.3. Among these types, every mutation type corresponds to a violation of

the above four consistency properties.

The result of detecting mutation type represents how well FANTASIA may

detect the violation of corresponding property. For this experiment, at least one

injections are performed per mutation type that amounts to 10 to 15 injection

per application. It is noted that some mutation types are not applicable for all

53

applications. For example, it is not mandatory that all controllers use the model

variables. For these types of specific case, some mutation types are not considered.

As a result, in some applications there are less than 15 injections injected. The

location of the mutated code is chosen uniformly considering that if the line, where

the code is present is applicable for current mutation type. For every injection,

the number of successful identifications and number of failed identifications are

considered for further result analysis and comparative study.

5.4 Result Analysis

The results of fault injection study are illustrated in Table 5.4 and Table 5.5 respec-

tively. The result of fault injection study on twelve AngularJS MVC applications

(without custom directives) is represented by Table 5.4. Besides, Table 5.5 shows

the result of fault injection study on three AngularJS MVC applications (having

custom directives). For every application the precession and recall is calculated. It

shows that FANTASIA performs accurate with the overall recall of 92.05% (Table

5.5). Moreover, FANTASIA also performs precisely with the 85.6% recall in other

three applications (Table 5.6) that contain custom directives.

5.4.1 Accuracy

The accuracy of FANTASIA is inferred from both the Table 5.4 and Table 5.5.

FANTASIA performs accurately in MVC applications (absent of custom directives)

with overall 92.05% recall. It also performed some failure detections. To analyze

the reason for getting the failure detection, the result is divided based on the

consistency properties. It is found that 6 numbers of failed detections is caused

for the type inconsistency in controller functions and model variables. The reason

is that it is assumed that the values used in model variables and return by the

controller functions are simple expression having primitive types such as Number,

54

Table 5.4: Fault injection result performed by FANTASIA on twelve AngularJS
MVC applications (Without custom directives)

No Application Size
(LOC)

Total
Injection

Successful
Detection

Failed
Detec-
tion

Recall

1 Balance Projector 511 15 13 2 86.67%
2 CafeTownsend 452 15 14 1 093.94%
3 Currencies-GH-Page 350 12 12 0 100%
4 Cyptrograpgy 523 11 10 1 90.91%
5 Event bus 690 12 10 2 83.33%
6 GitHub Contributors 459 14 12 2 85.71%
7 Kodigon 984 15 13 2 86.67%
8 Life Stacks 350 10 10 0 100%
9 Mark Down 150 11 11 0 100%
10 Memory Game 181 10 10 0 100%
11 Sliding Puzzle 608 12 11 1 91.67%
12 Sudoku 706 14 12 2 85.71%
Overall 5964 151 138 13 92.05%

String, Boolean. FANTASIA cannot detect those inconsistent model variables

and controller functions return type that contain complex expression and get data

from external database. Moreover, some applications contain filters that is used in

the view for customizing the model variable. The presence of the filters is omitted

in the implementation of FANTASIA while extracting the components from the

view file. This is also another reason for failed detection.

5.4.2 Performance

FANTASIA can also measure the average time to perform the analysis for each

application. It takes the average time of 120 milliseconds to find inconsistencies

in the experimental dataset. Besides the worst case of 233 milliseconds in the

largest application namely Event Bus. From this observation it is inferred that

performance in not a considerable issue for FANTASIA.

55

Table 5.5: Fault injection result performed by FANTASIA on three AngularJS
MVC applications (Having custom directives)

No Application Size
(LOC)

Total
Injection

Successful
Detection

Failed
Detec-
tion

Recall

1 Shopping List 356 12 10 2 83.34%
2 Student Management 476 11 9 2 81.82%
3 Funny Facebook App 678 12 11 1 91.64%
Overall 1510 35 30 5 85.6%

5.5 Comparative Result Analysis

In the previous section, initially the proposed approach FANTASIA is run on the

mutated applications to analyze the accuracy and performance. The result of the

analysis is shown in Table 5.4 and Table 5.5. Moreover, for comparative result

analysis the existing approach AUREBESH is also run on the mutated applica-

tions. After that, number of successful and failed identifications is considered for

result analysis. The outcome of the existing approach AUREBESH is very poor

with overall 0.0% recall in the twelve AngularJS MVC applications. To understand

the reason manual inspection are performed. Two reasons are found that respon-

sible for AUREBESH poor performance. The first reason is that these twelve

applications are refactored following the recommended angular style guide. Be-

sides, there is a popular feature of AngularJS called controllerAs that is available

in the latest version of AngularJS. It provides an alice for the controller to repre-

sent its model variables and controller functions in the view. Since AUREBESH is

developed by omitting this feature, it cannot detect the mutated inconsistencies.

On the other hand, accuracy of the AURBESH on three AngularJS applications

(having custom directives) is also poor. In this case the reason is obvious because

AURBESH does not consider the presence of custom directives. So, AURBESH

fails to detect inconsistency that present in the custom directives. Since the re-

factored application are not compatible dataset for AUREBESH, the comparison

between the AUREBESH and FANTASIA cannot be performed. To conduct the

56

Table 5.6: Comparative result between FANTASIA and AUREBESH on twelve
AngularJS MVC applications (Without custom directives) :SD represents Success-
ful detection, FD represents Failed detection

No Application Total
Injection

FANTASIA AUREBESH

SD FD Recall SD FD Recall
1 Balance Projector 15 13 2 86.67% 12 3 80.00%
2 CafeTownsend 15 14 1 093.94% 14 1 93.94%
3 Currencies-GH-Page 12 12 0 100% 12 0 100%
4 Cyptrograpgy 11 10 1 90.91% 10 1 90.91%
5 Event bus 12 10 2 83.33% 10 2 83.33%
6 GitHub Contributors 14 12 2 85.71% 13 1 92.85%
7 Kodigon 15 13 2 86.67% 13 2 86.67%
8 Life Stacks 10 10 0 100% 10 0 100%
9 Mark Down 11 11 0 100% 11 0 100%
10 Memory Game 10 10 0 100% 10 0 100%
11 Sliding Puzzle 12 11 1 91.67% 11 1 91.67%
12 Sudoku 14 12 2 85.71% 11 3 78.57%
Overall 151 138 13 92.05% 137 14 91.49%

comparative study, the applications are turned into its actual version using the

older version of AngularJS omitting the recommended angular style guides. It

means that the new features are not present within the applications. Now, FAN-

TASIA and AUREBESH both tools are run on those applications. The number

of successful and failed identifications are counted to calculate recall. Table 5.6

shows the comparative result of the study on twelve applications. It is seen that

FANTASIA and AUREBESH perform almost same with 92.05% and 91.49% recall

respectively. The reason is that FANTASIA is compatible for both the older and

new version of AngularJS. It consider both the presence and absence of the new

features of AngularJS.

Table 5.7 shows the comparative result of the study between AUREBESH and

FANTASIA on three applications having custom directives. It is seen from the

table that FANTASIA performs same as it performed before with 85.6% recall.

However, AUREBESH performs poor with 42.68% recall since it omits the pres-

ence of custom directives no matter which version of AngularJS is used in the

57

Table 5.7: Comparative result between FANTASIA and AUREBESH on three
AngularJS MVC applications (Having custom directives) :SD represents Successful
detection, FD represents Failed detection

No Application Total
Injection

FANTASIA AUREBESH

SD FD Recall SD FD Recall
1 Shopping List 12 10 2 83.34% 5 7 41.67%
2 Student Management 11 9 2 81.82% 5 6 36.37%
3 Funny Facebook App 12 11 1 91.64% 6 6 50%
Overall 35 30 5 85.6% 15 20 42.68%

applications. It can identify some inconsistencies in these three applications. The

reason is that these inconsistencies are not present within the custom directives.

AUREBESH can only identify those inconsistencies that only present in the con-

troller and view modules of the applications.

58

Chapter 6

Discussion and Conclusion

6.1 Discussion and Conclusion

The presence of the inconsistency in AngularJS MVC applications produce hid-

den bugs, reduce the readability and maintainability of the code. In this research

work, an automatic inconsistency identification approach and tool named FANTA-

SIA is proposed. The proposed approach can identify inconsistency in AngularJS

MVC application in the presence of custom directives. It has been observed that

FANTASIA performs with an overall recall of 92.05% in detecting inconsistency in

those AngularJS applications that are developed using recommended style guide

and do not contain custom directives. Besides, FANTASIA also performs effi-

ciently to detect inconsistency with an overall recall of 85.6% in that AngularJS

MVC applications that contain custom directives. This chapter concludes the re-

search work with a brief description of the threats along with the future direction

of this proposed techniques.

59

6.2 FANTASIA: The proposed inconsistency iden-

tification technique in the presence of cus-

tom directives in AngularJS MVC Applica-

tion

FANTASIA comprises two procedures and two algorithms. The two procedures

namely, GetInitializedMVCGroup and GetPopulatedMVCGroup help to initialize

the empty mvc groups and populate the mvc groups from the application structure.

Moreover, the two algorithms namely Extracting Custom Directives and Identify-

ing Inconsistencies are used to extract the directives and detect to inconsistency in

the mvc groups. GetInitializedMVCGroups procedure finds all the required files

and initializes the empty mvc groups. After that, procedure GetPopulatedMVC-

Groups extracts models, views and controllers from those required files. It is also

done by extracting the application configuration file where the routing configura-

tion is defined .The first proposed algorithm Extracting Custom Directives finds

all the custom directives present in the application and extract them according

to their properties. It may updates the previous mvc groups or it may add new

mvc group based on its scope properties. Finally, the Identifying Inconsistencies

algorithm checks the consistency among the models, views, controllers and custom

directives that are present in the mvc groups. In brief, by incorporating these two

procedures and two algorithms FANTASIA first initializes an empty mvc group.

This group is populated by extracting the controllers and views files. Later, if any

custom directive present in the application, they are extracted and updated the

mvc groups. Finally, inconsistency is identified within that mvc groups.

60

6.3 Discussion of the Result

A fault injection study and comparative study are performed on several AngularJS

MVC applications to check the accuracy and efficiency of FANTASIA. For the ex-

periment, FANTASIA and existing approach AUREBESH both are implemented

using JavaScript programing language. Faults are injected into the selected appli-

cation according to the JavaScript MVC framework consistency models properties

[6]. Both the techniques are run on the same faulty applications, and manual

inspection is also performed on those applications. It is observed that FANTASIA

performs well with the 92.05% recall in those applications that do not contain

custom directives along with developed by following angular style guides. It can

also identify inconsistency the rest of the three applications with the recall of

85.6% where the presence of custom directives is considered. It is seen that AU-

REBESH cannot identify inconsistency in that applications that are developed

by following AngularJS latest version. For conducting a comparative study, both

FANTASIA and AUREBESH are run on applications that are developed by fol-

lowing the older version of AngularJS .The result shows that both the FANTASIA

and AUREBESH perform well with the recall of 92.05% and 91.49% respectively.

It is noted that recall of identifying inconsistency not changed for FANTASIA as it

can identify inconsistency in both versions of AngularJS. Besides, FANTASIA can

detect inconsistency in the presence of custom directives and gets 85.6% recall.

On the other hand , AUREBESH cannot identify inconsistency that are present

within the custom directives and gets 42.68%.

6.4 Threats to Validity

Although FANTASIA performs better than the existing tool AUREBESH for the

particular experiment in this research work, it contains the notable threat that

should be considerable. In this section, the threats that may affect the validity of

61

the proposed techniques are discussed.

• Internal Threat: The implementation of the techniques and the experi-

mental setup of the proposed techniques are based on JavaScript programing

languages as well as HTML. This may cause internal threats that affect the

validity of the experimental result. Therefore, the expected result gained

through analyzing the experimental projects may vary if the implementation

and the experimental projects depend on other platform and technologies.

• External Threat: The experimental applications that are chosen are used

in the existing techniques may affect the experiment result. Besides, it is

assumed that those projects are also elected which are developed following

recommended coding guidelines as well as having custom directives. So, if

the selected applications change the assumptions, it may affect the experi-

mental results.

• Construct Threats: To analyze the effectiveness of the proposed tech-

niques, Precision and Recall software metrics is used in this experiment.

The experimental results are analyzed based on the number of faults de-

tected by the proposed and existing tool and represent their efficiency using

precision recall. Therefore, analyzing the result in different metrics effect

the generalization of the expected result.

6.5 Future Work

The idea of identifying inconsistency in AngularJS MVC application in the pres-

ence of custom directives contributes to the literature by inventing techniques

named FANTASIA. The techniques can be incorporated with the existing tool

AUREBESH to identify inconsistency to other JavaScript MVC frameworks. In

this research work, the scope of this proposed technique is just to identify the

62

inconsistency. However, it can be further used to automatically remove the in-

consistency from AngularJS MVC applications as an inconsistency detection tool.

The proposed technique FANTASIA is implemented using JavaScript programing

language and Node.js framework, in the form of Command Line Interface (CLI). It

is completely a platform independent tool since Node.js can be run on all platform

. However, the technique can be implemented using other programing languages

such as C++, Java, C#, etc. Moreover, a Google Chrome extension is being built

to detecting inconsistency in AngularJS MVC applications based on the proposed

techniques. The AngularJS applications that are used for fault injection study

and result analysis are not too larger considering the Line of Code (LOC) and a

number of modules. Therefore, dealing with the real life applications or industrial

applications is a future issue.

63

Bibliography

[1] M. S. Mikowski and J. C. Powell, “Single page web applications,” B and W,
2013.

[2] AngularJS, “AngularJS Site.” https://docs.angularjs.org/, 2016. [On-
line; accessed 8-August-2016].

[3] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce, “Twitter boot-
strap and angularjs: Frontend frameworks to expedite science gateway de-
velopment,” in 2013 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 1–1, IEEE, 2013.

[4] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical study
of client-side javascript bugs,” in 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pp. 55–64, IEEE, 2013.

[5] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsistency
analysis for javascript,” in 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, vol. 1, pp. 314–324, IEEE, 2015.

[6] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Detecting inconsisten-
cies in javascript mvc applications,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pp. 325–335, IEEE Press,
2015.

[7] S. Seshadri and B. Green, AngularJS: Up and Running: Enhanced Produc-
tivity with Structured Web Apps. ” O’Reilly Media, Inc.”, 2014.

[8] trygver, “trygver.” http://heim.ifi.uio.no/~trygver/index.html, 2016.
[Online; accessed 12-September-2016].

[9] G. E. Krasner, S. T. Pope, et al., “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system,” Journal of object oriented
programming, vol. 1, no. 3, pp. 26–49, 1988.

[10] codinghorror, “understanding-model-view-controller.” https://blog.

codinghorror.com/understanding-model-view-controller/, 2016.
[Online; accessed 12-September-2016].

[11] DocForge.com, “Framework.” http://docforge.com/wiki/Framework,
2016. [Online; accessed 12-September-2016].

64

[12] DocForge.com, “Web application framework.” http://docforge.com/wiki/

Web_application_framework, 2016. [Online; accessed 12-September-2016].

[13] jquery.com, “jquery.com.” https://jquery.com/, 2016. [Online; accessed
12-September-2016].

[14] docforge, “Model-View-Controller.” http://web.archive.org/web/

20151025035024/http://docforge.com/wiki/Model-View-Controller,
2016. [Online; accessed 12-August-2016].

[15] stackoverflow.com, “what-is-separation-of-concerns.”
http://stackoverflow.com/questions/98734/

what-is-separation-of-concerns, 2016. [Online; accessed 12-September-
2016].

[16] K. Hrgovic, “Top 10 Most Used JavaScript Frameworks.” https://blog.

codeanywhere.com/top-10-most-used-javascript-frameworks/, 2016.
[Online; accessed 12-September-2016].

[17] M. Ramos, M. T. Valente, R. Terra, and G. Santos, “Angularjs in the wild:
A survey with 460 developers,” arXiv preprint arXiv:1608.02012, 2016.

[18] sitepoint, “practical-guide-angularjs-directives-part-two.” https://www.

sitepoint.com/practical-guide-angularjs-directives-part-two/,
2016. [Online; accessed 12-September-2016].

[19] angularjs, “Developer Guide.” https://docs.angularjs.org/guide, 2016.
[Online; accessed 12-September-2016].

[20] sitepoint, “introduction-angularjs-style-guides.” https://www.sitepoint.

com/introduction-angularjs-style-guides/, 2016. [Online; accessed 12-
September-2016].

[21] A. Leff and J. T. Rayfield, “Web-application development using the mod-
el/view/controller design pattern,” in Enterprise Distributed Object Com-
puting Conference, 2001. EDOC’01. Proceedings. Fifth IEEE International,
pp. 118–127, IEEE, 2001.

[22] B. Taraghi and M. Ebner, “A simple mvc framework for widget development,”
in Proceedings of the International Workshop on Mashup Personal Learning
Environments (MUPPLE). CEUR-WS, pp. 38–45, 2010.

[23] J. Fujima, “Building a meme media platform with a javascript mvc framework
and html5,” in Webble Technology, pp. 79–89, Springer, 2013.

[24] J. Coutaz, “Pac, an object oriented model for dialog design,” in Proceedings
Interact, vol. 87, pp. 431–436, 1987.

[25] Y. Tanaka, Meme media and meme market architectures: Knowledge media
for editing, distributing, and managing intellectual resources. John Wiley &
Sons, 2003.

65

[26] G. Trends, “JavaScript Framwork.” https://www.google.com/trends/,
2016. [Online; accessed 12-August-2016].

[27] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pp. 100–109, IEEE, 2011.

[28] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Autoflox: An auto-
matic fault localizer for client-side javascript,” in 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation, pp. 31–40,
IEEE, 2012.

[29] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Vejovis: suggesting fixes
for javascript faults,” in Proceedings of the 36th International Conference on
Software Engineering, pp. 837–847, ACM, 2014.

[30] ImProgrammer, “Popular JavaScript Framwork.” http://www.

improgrammer.net/most-popular-javascript-frameworks-2015/, 2016.
[Online; accessed 12-August-2016].

[31] GitHub, “GitHub/AngularJS Style Guide.” https://github.com/

johnpapa/angular-styleguide, 2016. [Online; accessed 9-August-2016].

[32] NodeJs, “Node JS Site.” https://nodejs.org/en/, 2016. [Online; accessed
8-August-2016].

[33] NPM, “NPM Site.” https://www.npmjs.com/, 2016. [Online; accessed 8-
August-2016].

[34] Esprima, “Esprima Site.” http://esprima.org/, 2016. [Online; accessed
8-August-2016].

[35] Escodegen, “Escodegen Site.” https://github.com/estools/escodegen,
2016. [Online; accessed 8-August-2016].

[36] Estraverse, “Estraverse Site.” https://github.com/estools/estraverse,
2016. [Online; accessed 8-August-2016].

[37] Webstorm, “Webstorm Site.” https://www.jetbrains.com/webstorm/,
2016. [Online; accessed 8-August-2016].

[38] Chrome, “Chrome DevTools.” https://developer.chrome.com/devtools,
2016. [Online; accessed 8-August-2016].

[39] builtwith, “builtwith.angularjs.org.” https://builtwith.angularjs.org/,
2016. [Online; accessed 8-August-2016].

[40] GitHub, “GitHub/AngularJS.” https://github.com/angular/angular.

js, 2016. [Online; accessed 9-August-2016].

66

