
REUSABLE ADAPTATION COMPONENT FOR SELF-ADAPTIVE
SYSTEMS

KISHAN KUMAR GANGULY
BSSE 0505

A Thesis
Submitted to the Bachelor of Science in Software Engineering Program Office

of the Institute of Information Technology, University of Dhaka
in Partial Fulfillment of the
Requirements for the Degree

BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

Institute of Information Technology
University of Dhaka

DHAKA, BANGLADESH

© KISHAN KUMAR GANGULY, 2016

REUSABLE ADAPTATION COMPONENT FOR SELF-ADAPTIVE
SYSTEMS

KISHAN KUMAR GANGULY

Approved:

Signature Date

Supervisor: Dr. Kazi Muheymin-Us-Sakib

ii

To Sankar Kumar Ganguly, my father
whose endless inspiration has always kept me motivated

iii

Abstract

Self-adaptive software development poses challenges in case of reusable adaptive

logic generation, as the boundary between adaptation logic and business logic is

often not clear. According to the separation of concern principle, the software

adaptation logic and the business logic should be kept apart for reusability [1].

Developers have different perspectives in case of defining interfaces between these

two parts. According to the context, self-adaptive systems change their behavior

at runtime without any service interruption. As all these context changes cannot

be defined at a time, to address these in the adaptation logic, it becomes more

challenging. Due to these problems, the developed adaptation module does not

become reusable. So, developers have to go through the same hardship over and

over again for subsequent projects.

In this report, a reusable self-adaptive system design has been proposed. In

this design, the feature, feature dependencies, metrics, utility functions that are

equations representing metric threshold values and additional training features,

which are predictors for training are collected. The knowledge base is generated

by collecting metric values for different feature selection in a simulated environ-

ment. Then, training is performed which results in feature-metric relationship

equations. When a need for adaptation is detected by analyzing the metric thresh-

old values, an optimization problem is constructed to improve the overall utility

of the system. The optimization problem results in a future selection that can

be effected through effectors. To ensure the reusability of the subcomponents of

iv

the adaptation component, design patterns were used to maintain separation of

concern.

The proposed methodology was validated using a popular model problem

named Znn.com. It was deployed in five servers which were balanced by a load bal-

ancer. Then, the code was analyzed statically to get the values of three reusability

metrics namely Lines of Code (LOC), Message Passing Coupling (MPC) [2] and

Lack of Cohesion of Methods 4 (LCOM4) [3]. For reusability, it is seen that the

proposed method contains 4367 LOC compared to 24891 LOC of Rainbow. For

LCOM4, 86.15% classes have ideal value that is either 0 or 1. The MPC value is

also low which is 3.046 in average. The system was put under high load to see if

adaptation occurs and can improve the response time down to a threshold. It has

been seen that the adaptation mechanism performs better than the system with-

out any adaptation mechanism by gradually decreasing the response time. Thus,

the proposed method seems to to be reusable and effective in terms of adaptation.

v

Acknowledgments

I would like to appreciate my supervisor Dr. Kazi Muheymin-Us-Sakib for his

supportive guidance, continuous inspiration and candid advice. His support and

help have inspired me to relentlessly work for producing the best quality work I

can throughout the project. I would also like to thank my classmates of BSSE 5th

Batch for their continuous motivation throughout the project.

vi

Contents

Approval ii

Dedication iii

Abstract iv

Acknowledgements vi

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 4
1.3 Contribution and Achievement . 6
1.4 Organization of the Report . 7

2 Background Study 9
2.1 Self-Adaptive System . 10
2.2 Applications of Self-Adaptive Systems 11

2.2.1 Sensor Networks . 11
2.2.2 Intelligent Infrastructure Systems 12
2.2.3 Manufacturing Process . 12
2.2.4 Social Service-Based systems 12
2.2.5 Transportation . 13
2.2.6 Software Industries . 13

2.3 Self-Adaptive System Life Cycle Model 13
2.4 Self-Adaptive System Design . 15

2.4.1 MAPE-K Architecture . 16
2.4.2 Software Architecture . 18
2.4.3 Software Component Model 20
2.4.4 Feedback Control . 21
2.4.5 Machine Learning . 23
2.4.6 Software Product Line and Variability 26

vii

2.4.7 Design Patterns . 28
2.5 Summary . 33

3 Literature Review of Self-Adaptive System Design 34
3.1 Architecture-Based Approaches . 35

3.1.1 Rainbow . 35
3.1.2 MADAM . 37
3.1.3 Transformer . 39
3.1.4 Summary of Architecture-Based Approaches 40

3.2 Component Model-Based Approaches 41
3.2.1 The K-Component Framework 41
3.2.2 Fractal-Based Framework 43
3.2.3 Fractal and Dynamic AOP-Based Approach 44
3.2.4 Summary of Component Model-Based Approaches 45

3.3 Control-Theory Based Approaches 46
3.3.1 Hierarchical Model-Based Autonomic Control 46
3.3.2 Feedback Control for MRAS 47
3.3.3 Control Design Process . 49
3.3.4 Summary of Control Theory-based Approaches 51

3.4 Machine Learning-Based Approaches 51
3.4.1 Q-learning Based Method 52
3.4.2 Model-Based Reinforcement Learning Technique 53
3.4.3 FUSION Framework . 55
3.4.4 Summary of Machine Learning-Based Approaches 57

3.5 Software Product Line-Based Approaches 57
3.5.1 Dynamic Software Product Line-Based Approach 58
3.5.2 MODELS@RUN.TIME . 59
3.5.3 ASPLe Framework . 60
3.5.4 Summary of Software Product Line-based approaches 61

3.6 Design Pattern-Based Approaches 62
3.6.1 Design Pattern Catalogue for Self-Adaptive Systems 62
3.6.2 Variability Modeling and Design Patterns for Self-adaptive

Systems . 64
3.6.3 Summary of Design Pattern-Based Approaches 65

3.7 Summary . 66

4 A Reusable Adaptation Component Design Technique for Self-
Adaptive System 67
4.1 Introduction . 67
4.2 Reusable Adaptation Component for Self-Adaptive Systems 68

4.2.1 Logical View of The Model 68
4.2.2 Structural View of The Model 80

4.3 Summary . 84

viii

5 Implementation and Result Analysis 85
5.1 Implementation Details . 86
5.2 Case Study: Znn.com . 90
5.3 Experimental Setup . 92
5.4 Metrics . 95
5.5 Result Analysis . 96
5.6 Summary . 102

6 Conclusion 103
6.1 Discussion . 103
6.2 Threats to Validity . 104
6.3 Future Work . 105

Bibliography 106

ix

List of Tables

2.1 Support of Design Patters in Four Functions of MAPE-K Loop . . . 28

4.1 Constraints for Feature Relationships 71

5.1 Proposed Method vs. Rainbow Considering LOC 97
5.2 Descriptive Statistics for LCOM4 and MPC of The Proposed Method 98

x

List of Figures

2.1 Timeline View of Development Process and a Running Self-Adaptive
Software System . 14

2.2 MAPE-K Feedback Loop by IBM 16
2.3 Interface of ArchEdit with xADL support 19
2.4 Block Diagram of Feedback Control Loop 21

4.1 The Logical View of the Proposed Methodology 69
4.2 Configuration Information . 72
4.3 The Structural View of Learning Component 81
4.4 The Structural View of Adaptation Component 82

5.1 N-tier Architecture of Znn.com . 91
5.2 Deployment Diagram of Znn.com 92
5.3 Results for LOC of The Proposed Technique 97
5.4 Results for LCOM4 and MPC of The Proposed Technique 98
5.5 Comparison of Performance : Adaptation vs Without Adaptation

in Five Runs . 100

xi

Chapter 1

Introduction

In the vastly dynamic operating environment now-a-days, software systems need to

provide service according to the context in place. Self-adaptive systems are those

which responds appropriately to the changing environment to provide better and

relevant service to the users. Along with the growth of the self-adaptive system

design approaches, reusability has become a concern [4, 5]. A reusable adaptation

mechanism can save a lot of coding and testing time by providing a ready-made

solution. In this chapter, the motivation behind this work and challenges have

been discussed. This chapter also carries the research questions and contribution

of the proposed self-adaptive system design mechanism. A section on how the

report has been organized is mentioned at the end of this chapter.

1.1 Motivation

The motivation behind the work is the growing need for reusable and effective

adaptation component, as seen from the literature [6]. Consider a scenario where

the business logic of a system has been developed. As the adaptation component is

complex, it takes time to develop. Besides, due to existence of a lot of adaptation

mechanisms in the literature, the task becomes more difficult. This is because

the literature provides no specific guideline in choosing an adaptation approach.

1

However, It is visible from the literature that many parts of the adaptation logic

is common from domain to domain [7]. So, it would be better if these parts can be

reused in this case. However, integrating these parts also pose challenges because

integration requires some knowledge of the underlying code. So, the preferable

choice is to generate the whole adaptation component and augment it to the

business logic. The application specific parts of the adaptation component will

contain hooks [7] to specialize. Besides, the reusable subcomponents inside the

adaptation components will contain abstraction and flexibility to customize these

as needed.

Another concern in generating a reusable adaptation component is to preserve

the quality of adaptation while ensuring reusability. Along with the model being

reusable, the adaptation logic also needs to be generic in nature. More specifically,

the adaptation logic has to be expressed as a mathematical model because a

mathematical model is mostly generic. An adaptation component that contains

reusable logic and reusable subcomponents can help to reach the objective as

mentioned in the previous paragraph.

Self-adaptive systems design methodologies based on architecture, control the-

ory and machine learning have been proposed. MAPE-K (Monitor, Analyze, Plan

and Execute with a Knowledge base) feedback loop [8], was proposed by IBM Cor-

poration which was a blueprint for self-adaptive systems. Garlan et al. described

the Rainbow framework [9] which was based on MAPE-K architecture. Rain-

bow used static strategies to perform adaptation at runtime. Although Rainbow

aimed to achieve reusability by separating the adaptation component, the adap-

tation strategies or rules are system specific and need to be written separately for

systems of different architectural styles. Cheng et al. proposed a technique where

action was taken based on maximum utility [4]. However, it also had problems

of aforementioned static condition-action rules. All these architecture-based ap-

proaches use an architectural model for analysis, and then perform changes to the

2

system with a translator. The requirement of a specific architectural model makes

automated generation of reusable and easy-to-integrate adaptation component in-

feasible using state-of-the-art architecture-based approaches.

Control theory-based systems consist of a controller, plant (core system), sen-

sors and references. Sensors receive the output of the system while controller com-

pares it with the reference to compute an error value. This error triggers change

in the parameter of the core system to bring its output as close as possible to goal.

Filieri et al. proposed a six-step control theory-based approach where each step

was described in details with mathematical formulations [10]. They mentioned

that existing tools require system specific model so, these are not reusable across

different systems. Y. Brun et al. discussed existing control theory-based tools and

techniques in their paper [5]. They mentioned conversion of an existing system

into a self-adaptive one through a tool as a research challenge.

Machine learning based approaches were also proposed to address the dynamic

nature of self-adaptive systems. Kim D. et al. proposed a Q-learning based method

where they used a Q-value measure for every reconfiguration of the system to

choose the best one [11]. However, they did not consider reuse. Elkhodary et

al. proposed the FUSION framework where relation between goals and variation

points are learnt using a knowledge base [12]. The learnt relations are use to

construct a optimization problem to choose a reconfiguration that satisfies all the

goals. FUSION considered separation of concerns and provided opportunity for

modular code generation. However, the scope of FUSION was to provide a feature

oriented adaptation framework only. FUSION, as a tool, also depended on existing

component control mechanism and model to code transformation for effecting the

changes which may lead to the problems mentioned previously.

Some approaches based on component based software development have also

been proposed. David et al. introduced a methodology [13] where the business

logic needed to be implemented with the Fractal component model[14] and static

3

strategies were used to add or remove components to achieve adaptability. Al-

though this technique considered reusability of adaptation logic, the requirement

of following a specific component model caused the aforementioned problems. Wu

et al. conducted a case study [15] on integrating dynamic Aspect Oriented Pro-

gramming (AOP) and Fractal to provide reusability and adaptation capability to

a system. It was seen that reusability was achieved. However, due to the problems

of component models listed previously, this also does not provide a solution to the

aforementioned problem.

It is evident from the literature that some of the approaches model the adap-

tation logic internally and so, fail to achieve reusability. Some approaches discuss

external adaptation and focus on ensuring reusability through separation of adap-

tation logic from business logic. However, most of these either require following a

specific model or achieves reusability of the adaptation logic only. It is also seen

from the literature that no model aims to achieve a more granular level of reuse.

This is why a self-adaptive system mechanism is needed which addresses more

granular level reuse and provides effective adaptation logic.

1.2 Research Questions

As seen from the previous section, most of the existing literature on self-adaptive

system design focus on adaptation mechanism rather than reuse. Although some

of the works consider separation of concern, these require either system specific

adaptation rules or a component model for integration. However, developers may

not proceed towards writing specific adaptation rules for every cases or restructur-

ing whole project following a component model due to limited time and amount

of effort involved. Only a readily deployable adaptation component that can be

reused and integrated without restructuring the codes to a specific model, can

help to mitigate this problem. This leads to the following research question.

4

1. How can a reusable adaptation component be generated that adapts effec-

tively in all systems?

More specifically, this research question will be answered by the following

sub questions.

(a) How to model system specific adaptation rules for reuse?

System specific adaptation rules can be modeled using features, metrics

and metric thresholds. Features are variation points of a system and

metrics measure some attributes of it. Goal violations can be captured

using thresholds of the metrics that should not be exceeded for goal

conformance. Metric values can be captured from the API that the

developers of self-adaptive systems need to provide. This threshold and

metric calculation component can be provided as input to the system

so that different thresholds and metrics for different systems can be

captured. Information about the features such as their names, package

names and corresponding components are also given as input. After

detection of goal violation, an optimization problem can be constructed

considering metric and features to resolve conflict among goals. This

problem can be solved to get a feature combination where maximum

goal conformance is achieved.

(b) How to devise a component control mechanism that can be reused

across different projects?

Interaction between business logic and adaptation component can be

modeled with dynamic AOP or weaving. Using weaving, to perform

swapping, the return value of an initiator method or factory method

of a business logic class can be intercepted and another class can be

returned. To remove a component, mock objects of the corresponding

classes can be constructed and returned from the factory methods in

the same way. The AOP based mechanism needs the presence of fac-

5

tory methods and requires coding to interface for automated component

control. However, there may be systems where these have not been fol-

lowed and thus refactoring is needed. To address this problem, a way

to customize component control mechanism can be provided where de-

velopers can specify implementations of adding, removing or swapping

components according to the design of the existing system. This cus-

tomized component control will help to conform to the design of the

existing system with minimal implementation rather than restructuring

the whole code base.

1.3 Contribution and Achievement

The contribution of this work is the technique for designing reusable adaptation

component for self-adaptive systems. From Section 1.2, it is evident that there

are mainly two goals which are achieving systematic reuse by incorporating easy

adaptation component generation and integration mechanism ,and providing an

effective adaptation model. To address the first goal, the system specific infor-

mation which are information about features, metrics, metric thresholds etc. are

received as input from the user. The adaptation logic is a mathematical model

that produces an optimization problem from a prediction model on goal violation.

The effectors, automated or customized, help to execute the feature selection ob-

tained from the solution to this problem. Thus, adaptation code is kept separated

from the business logic codes. The components are modeled using design patterns

to reach reuse at a more granular level.

The second question, that is to achieve an effective adaptation mechanism

has been addressed by modifying the FUSION framework [12, 16] with additional

training features and a knowledge base generation component. The additional

training features can help to obtain a more accurate prediction model and the

6

knowledge base generation component helps to resolve the problem when no data

is present for computing the prediction model. Thus, these two both increase the

effectiveness of adaptation and create a more generic adaptation logic.

The proposed methodology was applied on Znn.com, a model problem pro-

vided by the Software Engineering for Self-Adaptive Systems community [17].

The system was deployed in five servers balanced by a load balancer. Three met-

rics namely Lines of Code (LOC), Message Passing Coupling (MPC) [2] and Lack

of Cohesion of Methods 4 (LCOM4) [3] were used to test the reusability of the

approach. To test the effectiveness of adaptation, the system was put under high

load to see if adaptation can bring the response time within a threshold. In case

of reusability, the proposed method contains 4367 LOC compared to 24891 LOC

of Rainbow. 86.15% classes have ideal LCOM4 value which is either 0 or 1. The

MPC value is also low measuring 3.046 in average. The proposed adaptation

method also performs better in the high load than the system without adaptation

as it brings down the response time as soon as it rises. In this way, the proposed

method has been validated to be reusable and effective.

1.4 Organization of the Report

In this section, the organization of the report has been shown to provide a roadmap

to this document. The organization of the chapters in this report has been men-

tioned in the followings.

Chapter 2: The definitions and background information of self-adaptive

system design have been discussed in this chapter.

Chapter 3: In this chapter, the existing works for self-adaptive system

design have been presented is a structural way.

Chapter 4: This chapter contains the proposed methodology for the reusable

7

adaptation component design.

Chapter 5: The experimental setup, implementation and result analysis

based on a case study have been provided in this chapter.

Chapter 6: This is the chapter that summarizes the whole report and high-

lights future work.

8

Chapter 2

Background Study

With growing complexity of software and uncertainty in the environment, Software

Engineering has become complicated [5]. Due to many operating environments

such as different operating systems, database systems, web servers etc., accurate

prediction of software runtime behavior has become impossible. This is why it

is not possible to state all the software requirements. specifically quality require-

ments [6] (for example, performance, security etc.), at the time of requirement

specification. So, to make a software conform to changing requirements or goals

at runtime, a mechanism is needed.

Self-adaptive systems are those which responds to context changes at runtime.

For a few decades, there has been a shift towards developing systems in a self-

adaptive manner to address the problem mentioned in the previous paragraph.

The concepts and designs from self-adaptive systems have been applied to fields

such as robotics, vehicle control, sensor system, signal processing etc. [18]. The

growing need of self-adaptive systems has called for proper Software Engineer-

ing principles to develop these [6]. However, research on software engineering

principles for these systems such as design, development, testing, reusability and

modularity etc. is still in an initial phase [6, 19]. Recent literature [6, 19] shows

that there are yet many challenges concerning self-adaptive system engineering,

9

specifically self-adaptive system design. This is why self-adaptive system design

needs further attention.

2.1 Self-Adaptive System

Without interrupting their service, the systems which are able to change their be-

havior and functionality at runtime, according to the context in place, are known

as self-adaptive systems. Context is the operational environment of a software.

As mentioned in [20], information that can be used to describe the situation of

an entity is called context, where entity can be any object (for example, user,

application etc.) related to the situation. Sensors are used to collect informa-

tion about the context. This information is used to analyze and take decisions

that are executed by effectors which are interfaces that allow structural changes

(component add, removal etc.) within a system [21].

The definitions of self-adaptive systems have been provided from numerous

perspectives. Brun et al. defined that, self-adaptivity refers to the capability to

adjust behavior at runtime [5]. The “self” [5] prefix indicates that the system

decides and acts by itself dynamically. They also mentioned that human inter-

vention in the form of policies for adaptation along with autonomic behaviors can

improve adaptivity [5]. Salehie et al. stated that, a self-adaptive system changes

its behavior only when a goal is violated or improved functionality is possible [22].

According to Esfahani et al., self-adaptive systems adapts at runtime to achieve

functional or quality-of-service goals [12]. Krupitzer et al. mentioned that, a self-

adaptive system modifies itself at runtime by adjusting parameters or artifacts

[23].

From the definitions, it is noticeable that an adjustment of behavior is trig-

gered as soon as a goal violation occurs. Although these goals can be divided into

functional and non-functional ones, self-adaptive system community have focused

10

more on non-functional goals [24]. The definition by Krupitzer et al. also men-

tioned that effecting a change may include changing attributes which are known

as configuration parameters. It may also include adjusting artifacts which may

range from changing an architectural representation to performing component level

changes. From the definition by Brun et al., self-adaptivity does not always re-

fer to fully autonomic behavior. Manual intervention, specially human developed

policies or rules are useful for generating a plan for adaptation. The definitions

and discussions combined, lead to four functions for self-adaptive system which

are monitoring, analyzing, planning and executing the plans.

2.2 Applications of Self-Adaptive Systems

As self-adaptive system design have been explored from various areas, it has been

applied on different domains such as sensor networks, intelligent infrastructure

systems, manufacturing process, social service based-systems, transportation and

finally in software industries [24]. Generally, self-adaptive systems can be applied

when a decision is necessary in the presence of an uncertain environment. The

applications of self-adaptive systems from the mentioned perspectives have been

given below.

2.2.1 Sensor Networks

Sensor networks have been used in military systems, health and manufacturing sys-

tems etc. [24]. As these systems are dynamic in nature, that is situation change

occurs quite often, these expose an area for self-adaptive systems to explore. For

example, RoboCup-Rescue [25] project was a disaster management robot simula-

tion that used sensor network for surveillance purpose, as mentioned by Macas-

Escriv et al. [24]. Here, the sensor network needed to have self-adaptivity. Design,

Monitoring and Operation of Adaptive Networked Embedded Systems (DEMANES)

11

was a project that aimed at developing component-based frameworks and tools for

developing self-adaptive systems. It was also mentioned that DEMANES would

be applied to cooperating sensors at home [26].

2.2.2 Intelligent Infrastructure Systems

These are systems that support communication, clean water and other such phys-

ical utilities. Self-adaptive systems can be use to provide effective support in such

varying environment. For example, MULTIFORM [27] is a project that can help

to design such systems with feedback control [5].

2.2.3 Manufacturing Process

In a manufacturing industry, large processes are involved. It is necessary to exert

enough monitoring and control over these processes to enhance quality [24]. As

self-adaptive systems deal with monitoring and control [5], these can be used to

develop effective manufacturing processes. For example, Scholze et al. described

the application of self-adaptive systems in shoe manufacturing where the process

in analyzed continuously to keep the process optimal by adjusting parameters such

as pressure, temperature, speed etc. of the pump [28].

2.2.4 Social Service-Based systems

In social service systems, adaptation can help the decision making process. For

example, health caring systems use intelligent network that provide the doctors

the best data suited to the context to take a health-related decision [24]. Recently,

Sarriot et al. performed case studies on municipal health systems in Bangladesh

and found that these worked like complex-adaptive systems [29].

12

2.2.5 Transportation

Transportation system is dynamic by nature. So, self-adaptive systems can also

help to analyze it [24]. National transportation systems consist of many divisions

and so a complex network exists within these. This also happens for military

systems. In this case, self-adaptive systems can help to take decisions within this

variable complex network.

2.2.6 Software Industries

Antivirus of IBM use biological techniques for anomaly detection which resem-

bles to self-adaptation monitoring process [24]. Besides, the field of robotics have

always tried to use concepts from self-adaptive systems to build more responsive

robots. For example, Denneberg et al. discussed Open Software Concept for Au-

tonomous Robots (OSCAR) which consisted of four layers namely command layer,

execution layer, image layer and hardware layer [30]. These layers corresponded

to the functions of a self-adaptive system.

2.3 Self-Adaptive System Life Cycle Model

The life cycle of self-adaptive systems, discussed by Andersson et al. [31] covers the

interaction between its development and operational state. The activities in these

two steps are also known as offline and online activities respectively. The life cycle

model has three stages which are initial development, evolution and adaptation,

and phaseout [31]. On each stage, the offline and online activities interacts with

one another which are known as interaction points [31].

Figure 2.1 shows interactions between development process and a running self-

adaptive system. In the first figure, X axis represents time and Y axis represents

development activity level. X and Y axis represents time and service level of

a running self-adaptive system respectively in the second figure. At first in the

13

Figure 2.1: Timeline View of Development Process and a Running Self-Adaptive
Software System (Reprinted with permission from Springer, Copyright 2013,
Springer-Verlag Berlin Heidelberg)

initial development phase the system is developed offline and provided with some

primary workarounds which can be alternatively used in place of one another.

After initial development it is deployed in 1 .

After deployment, as the system is running, developers continuously update

business logic and add corresponding workarounds in the system through online

updates. In 2 , it is seen that one or more online updates may have caused a

component fault which have negatively affected its service level.

In 3 , a situation have occurred at runtime which have negatively affected

the service level. The aforementioned workarounds are now used and the system

adapts to a point where service level increases.

The system may not be able to use provided workarounds to increase its service

level if an unknown fault occurs. As shown in 4 , the system needs to be shut

14

down and developed following offline activities because online update may be too

complex. The new context is considered and the fault is corrected offline. Then,

another deployment occurs and the system continues online. This situation has

been shown in 5 .

At some point, workarounds that may be added to address the fault is identified

and developed offline. Then, it is updated online as depicted in 6 . Finally, the

system leads to phaseout level when in future it is decided to be discontinued.

7 shows this phase where the system is shut down permanently and service level

reaches zero.

2.4 Self-Adaptive System Design

To fully describe a system, its architecture, components, interaction between its

components and its interface need to be specified. Self-adaptive system design

states how adaptive systems are comprised from high level (architecture), how

these high level components can be broken down into smaller components and

interact to achieve adaptivity. Self-adaptive system design is a trending research

topic in software engineering. As a result, numerous models [13, 9, 4, 32, 12]

have been proposed on self-adaptive system design. Architecture model [9, 33],

component model [13, 15], machine-learning [12, 11], control theory [32, 10], soft-

ware product line [34, 35] and design pattern [36, 37] based models are the most

prevalent ones, as seen from the literature. The following subsections introduce

the concepts related to these design models.

MAPE-K architecture, which is a widely used blueprint for self-adaptive system

is explained first. Then feedback-control and reinforcement learning is described

which are related to control-theory and machine learning based approaches re-

spectively. A brief discussion on software architecture and component models is

presented, followed by a description of software product line and design patterns.

15

2.4.1 MAPE-K Architecture

Figure 2.2: MAPE-K Feedback Loop by IBM

The MAPE-K architecture was proposed as a blueprint for an autonomic man-

ager. According to IBM, an autonomic manager is a component that automates a

management function and makes this function externally visible using an interface

[21]. The architecture of this autonomic manager has been shown in Figure 2.2.

The figure depicts that information captured by sensors are passed to monitor

function and then it is inspected by analyze function. The analysis triggers the

plan function and finally plans are executed through effectors from the execute

function. Each part is described briefly in the following subsections.

1. Monitor: This function receives information from the sensor interface. The

information is aggregated or organized in such a way that these correspond

to analyzable symptoms. For example, collected information can be mapped

to a metric (for example, performance) and passed to the analyze function.

16

2. Analyze: This determines if symptoms passed from the monitor indicate that

a violation of the system goal has occurred. In this case, a logical change

request for that particular symptom is passed to the plan function. For

example, if performance degradation is detected, a change request indicating

performance goal violation is issued.

3. Plan: The activities to bring back the system close to its goal are developed

by the plan function. These activities can be as simple as a single command

or complex such as a workflow consisting of multiple activities. In the exam-

ple of performance degradation, it can construct a plan for disabling some

memory consuming components that have been unused for a particular time

period.

4. Execute: This function schedules and performs changes proposed by plan

phase to the system. This changes are done through effector interface. Ex-

ecute can also update the content of knowledge base [21].

5. Knowledge: Knowledge is the data used and shared between the four func-

tions mentioned above. It includes policies, logs, historical information etc.

A knowledge base can be pre-supplied or constructed by the autonomic man-

ager. The historical information in the knowledge base needs to be updated

regularly as it holds the patterns useful for predicting resources or symptoms.

The knowledge also can be divided into three types which are solution topology

knowledge, policy knowledge and problem determination knowledge [21]. Solution

topology knowledge consists of system configuration and component information

which the plan function may use for choosing valid activities. Policy knowledge is

used for deciding if changes can be deployed into the system. Problem determina-

tion knowledge consists of monitored and symptoms data that the loop may use

to learn behaviors of adaptation.

17

2.4.2 Software Architecture

Architecture is the structure of a software system, where components are the

building blocks. Architecture of a software is defined and designed in the architec-

tural design phase. Various architecture-based adaptation techniques have been

proposed in the literature. This is why discussion on software architecture, specif-

ically architectural models and architectural styles is important. In the literature,

software architecture has been defined from various perspectives. Shaw et al. de-

fined architecture as an association of components and mentioned that subsystems

comprise a system through architectural operators [38]. Pressman mentioned that

software architecture is comprised of components and shows how different compo-

nents interact to build an overall system [39]. He also defined architectural design

to be the stage where software components, their properties and interactions are

defined [39]. Architectural design helps to analyze and see a complete picture of

a software before it is built and is an enabler for earlier design decisions [39]. In

an architecture-based self-adaptive system, architecture design model is analyzed

for goal violation and then updated according to adaptation decisions [9]. These

updates are also executed on the system by the effectors.

Architectural design models can be constructed following specific patterns

which are known as architectural styles [38]. These help introducing a consistent

structure throughout a system which enables runtime changes such as component

addition or removal. In the literature, architectural styles have been used to build

reusable self-adaptive systems [9]. Architectural styles are implemented by Ar-

chitectural Description Languages (ADL) [38]. ADLs are higher level languages

that describe the architecture of a system in a structured way. ADLs describe

the components, their interconnections, their interface, component roles and var-

ious other constituents of an architecture [38]. Most ADLs have both graphical

and natural language syntax. For example, xADL [40] is a popular ADL that

also supports modeling architecture visually through a tool called ArchEdit [40].

18

Figure 2.3: Interface of ArchEdit with xADL support

Figure 2.3 depicts the interface of ArchEdit with a model for a server to client

chat project. Both graphical and natural language based ADLs have been used

not only in architecture-based self-adaptive systems [9, 22] but also in machine

learning [12] and component model [41] based ones for structural support.

In an architecture-based self-adaptive system, architectural models are used

in the goal management, change management and component control phases, as

mentioned by Kramer et al [42]. For example, in FUSION which is a famous

model for self-adaptive system, Esfahani et al. used Goal Modeling Environment

(GME) [43], XTEAM [44] and Prism-MW [45] tools for goal management, change

management and component control respectively [12]. GME is a modeling tool for

building complex architectural models. GME supports component hierarchy, com-

ponent sets, connectors, references and component constraints. XTEAM is based

on xADL [40] and provides support to combine different ADLs in a single model.

Prism-MW is a middleware which supports automated transformation of architec-

tural model to code. All these tools support metamodeling which is a technique for

designing metamodel or schema of a model. A model conforms to a metamodel.

FUSION [12] uses a metamodel in each of the three phases and any model of a sys-

19

tem that uses FUSION have to conform to this metamodel. It is mentionable that

the language for this system specific model is known as Domain-Specific Modeling

Language (DSML). The DSML, its metamodel and model interpreter constitute

the area called Model Driven Engineering (MDE)[46]. Recently, researchers have

shown that MDE can be used to build effective self-adaptive systems [47].

2.4.3 Software Component Model

As software development is focusing more on maintainability and reuse, Compo-

nent Based Software Engineering (CBSE) is getting more attention by Software

Engineers. The unit of CBSE is a software component which is reusable, re-

placeable and independently deployable. Recent works on self-adaptive systems

are focusing more on CBSE-based software development [13, 15]. This is why a

discussion on CBSE is required. Software Component has been defined in the

literature from various perspectives. Szyperski et al. defined a component as a

unit of composition with third parties and interface as per contract, and a in-

dependently deployable entity [48]. Chaudron mentioned that a component is an

unit of ”independent deployment, replacement, reuse and composition” [49]. These

definitions indicate that components are self-contained entities and these can in-

teroperate with one another through appropriate interfaces. In Object Oriented

Programming (OOP), a component is a set of classes [39].

A component model defines the standards for component composition [49].

This indicates that a component is a building block of a system that conforms

to a specific component model. For example, Fractal is a component model that

has been used in [13] and [15] for developing component based self-adaptive sys-

tems. Fractal supports two types of components which are primitive and composite

components [50]. A primitive component consists of a single class. A composite

component is a set of primitive components, hiding some behavior as a whole.

Each component has a controller and content [50]. Controller exposes an inter-

20

Figure 2.4: Block Diagram of Feedback Control Loop

face for the content. Content is the actual code of the component. Fractal supports

reflection [50] where it can add, remove and inspect components at runtime. This

can help to achieve structural reconfiguration (adding, removing or swapping com-

ponents) [48] which is necessary for executors in self-adaptive system. Fractal

component model has a large feature set, a complete discussion of which is out of

scope of this report. Interested readers are refereed to the Fractal specification in

[50].

2.4.4 Feedback Control

Feedback control is a process for regulating the output of a system towards an

expected value. Control theory is a systematic approach for designing accurate

and stable feedback control loop [51]. In a feedback loop, goals are provided

as input and the output of the system are used as feedback. According to the

feedback, parameters of the system are tuned to push it towards goal. From

the definition of feedback loop, it is evident that feedback loop can be used to

develop self-adaptive systems. From the literature, it is seen that approaches such

as [32, 10] use control theory to design feedback loop for self-adaptive systems.

Figure 2.4 depicts the structure of the feedback loop. The feedback loop consists

of three components such as target system or plant, controller and transducer [51].

21

1. Target System or Plant: Target system is the one which is being controlled.

Target system accepts some control inputs which represent values of some

parameters (for example, size of a queue). By setting the parameter values,

the system is tuned towards goal.

2. Controller: Controller exerts control to the plant through control inputs.

Controller calculates the values of the control inputs based on both past and

present values of control error.

3. Transducer: Transducer translates or converts measured output in a form

which is comparable to reference input.

From Figure 2.4, five types of data are seen in the loop which are reference input,

control input, disturbance input, noise input and transduced output.

1. Reference Input: This is the expected value of the output. For self-adaptive

systems, this can be expected value of a metric, for example, response time

of 0.5 ms.

2. Control Input: Parameters, the value of which can be adjusted at runtime are

known as control inputs. For example, to improve performance, controller

may take the decision to update a parameter relating to maximum number

of servers.

3. Disturbance Input: Disturbances are changes that influence how control

inputs interact with measured output.

4. Noise Input: A noise may change the measured output from the plant. Noise

may occur at calculation time or data collection time.

5. Transduced Output: This is the transformed output passed through a trans-

ducer. For example, the transducer may normalize performance measures to

make those comparable to reference performance values.

22

In case of a self-adaptive system, during adaptation, control outputs need to be

predicted for choosing the best control inputs or parameter values. In a feedback

control loop, the current output depends on previous outputs and control inputs

[51]. For example, the current performance depends on previous performance

of a system because if it were better a few seconds ago, increased number of

users could be accommodated and this would affect future performance. The

mapping from previous outputs and control inputs to the current output is done

through a function which may be linear or nonlinear. So, outputs can be estimated

using techniques such as linear regression [52] for linear functions. In the case of

nonlinear functions, a nonlinear model can be used. Control theory is a large field

which has been used in electrical engineering, chemical engineering, mechatronics

etc. So, A detailed discussion of control theory is out of the scope of this report.

For a detailed discussion on control theory and feedback loop, readers may refer

to [51].

2.4.5 Machine Learning

Machine learning can be classified into four categories which are supervised, unsu-

pervised, semi-supervised and reinforcement learning [52].

1. Supervised Learning: Supervised learning learns from previous data or train-

ing data which are input and output pairs. From this data, it constructs a

model of relationship between inputs and outputs.

2. Unsupervised Learning: In case of unsupervised learning, only previous in-

puts are provided and model needs to be constructed from these.

3. Semi-Supervised Learning: In semi-supervised learning, only for some small

inputs, outputs are provided.

4. Reinforcement Learning: Reinforcement learning is the process of learning

from interaction with the environment [53].

23

Machine learning problems can be classified into two parts namely classification

and regression problems [52].

1. Classification Problem: Classification problems learn from the previous data

and generates a qualitative response. Qualitative response can have value

within a few classes, for example, performance can be within three classes

high, low or medium.

2. Regression: Regression problems generate quantitative response which are

numerical values. For example, performance can be represented by response

time which can take any numerical values.

In self-adaptive system design, supervised learning and reinforcement learning

have been used. For example, supervised learning has been used to predict a

function which calculates metric values from features. Features are components

that can be added or removed at runtime to achieve adaptation. As this is a

regression problem, it can be solved with techniques like linear regression [52].

Reinforcement learning have been used by Kim et al. in [11] and Ho et al. in

[54]. A reinforcement learning-based system always tries to choose the actions that

maximize rewards. For this, it uses previous actions that produced high rewards

and this is known as exploitation [53]. It also tries some previously unattempted

actions to find a new way to achieve higher rewards, which is known as exploration

[53]. These exploration and exploitation have to be balanced which is a difficult

and vastly researched problem [53]. A reinforcement learning based system has

four components such as policy, reward function, value function and model of the

environment [53].

1. Policy: A policy is an association between different states of the environment

and actions. In many cases, several policies are maintained in a lookup table

where states are mapped to corresponding actions.

24

2. Reward Function: This is a mapping between a state and a number that

indicates how much the system conforms to its goal. For example, a self-

adaptive system may choose a reward function that returns how much its

performance matches the expected one for a specific permutation of compo-

nents.

3. Value Function: Reward functions show how much the system conforms

to its goal for the current state or the next immediate state. However,

value function corresponds to future rewards. Sometimes, value functions

can be used instead of reward functions because a current high reward may

be followed by multiple low rewards which can be calculated using value

functions.

A reinforcement learning problem can be defined by Markov Decision Process

containing set of states, actions, transition probability and reward which can be

represented as a four tuple (Sm, Am, Pm, Rm) [54]. Sm is a set of states which are

specific configurations of the system. Am is a set of actions, defined as any activity

a system can perform. An action leads to change of the current state. Pm is the

transition probability that the action am will lead to another state sm′ from the

current state sm. Rm is the reward that is received after state transition occurs.

The techniques for reinforcement learning problems can be classified into model-

free and model-based approach [54]. Model-based approaches combine estimated

reward function and transition probability to produce a value function. In a

model-free approach, policies are derived by learning value function from imme-

diate rewards. A popular model-free algorithm is Q-learning [53]. In Q-learning,

a random state is chosen and the reachable states from it are considered. The

reachable state with maximum Q-value is chosen and its Q-value is calculated

using Equation 2.1.

Q(sn, an) = Q(sn, an) + α[Rn+1 −Q(sn, an) + γmaxQn(sn+1, a)] (2.1)

25

Here α is a constant and γ is the learning rate constant. Q(sn, an) denotes Q

value for state sn and action an. Rn+1 indicates reward received after moving to

the next reachable state.

At first all Q values are zero. These are continuously updated and stored, and

these stored Q values are repeatedly used in the Equation 2.1 to derive Q values

for next steps. The algorithm converges when all the Q values for all reachable

paths have been found. When a system needs to choose a policy, it uses all these

Q values for selecting the optimal path.

2.4.6 Software Product Line and Variability

As mentioned by Software Engineering Institute (SEI), Software Product Line

(SPL) is a “set of software-intensive systems” which have some common features

and have been developed from some core components [55]. SPL is the key to

systematic reuse [55]. For this reason, concepts from SPL have been used to

design and develop reusable self-adaptive systems [34, 7]. The core concern in

SPL is to separate the products in a product line from three aspects which are

commonality, reusable variations and product specifics [34].

1. Commonality: Artifacts that are common to all the products which need to

be managed.

2. Reusable Variations: Components that are common to some, but not all,

products that need to be managed.

3. Product Specifics: Every software has features that are very specific to the

problem it addresses. So, after building the common parts of the software

with the product line, these features are developed separately. These features

that are specific to only one product, are not added to the product line.

It is noticeable from the three parts that product line design leads to commonality

and variability management. These two parts are also known as Domain Engineer-

26

ing (DE) and Application Engineering (AE) respectively [34]. While DE aims to

develop a set of common features, AE aims to derive a specific product from these

features. In both of these stages, variability needs to be considered [34] because

exploiting commonality demands filtering out common behaviors from variations.

However, as mentioned by Abbas et al., to facilitate reuse in a self-adaptive system,

three types of variability need to be considered which are domain, cross-domain

and runtime variability [7].

1. Domain Variability: This refers to the differences among products within a

product line. For self-adaptive software, two parts namely managing system

(adaptation logic) and managed system (business logic) leads to two different

product lines. In each product line, domain variability within it needs to be

considered.

2. Cross-Domain Variability: This indicates variability across different product

lines. As mentioned previously, self-adaptive systems have two separate

product lines for managing and managed systems. Product lines in these

two systems can be combined to create a multi-product line, which addresses

this cross-domain variability.

3. Runtime Variability: Self-adaptive systems need to respond to changes that

occur at runtime. This is why runtime variability has to be considered at

the time of self-adaptive system design. The runtime variants need to be

foreseen and added to the product line beforehand.

Most works on self-adaptive system seem to focus on runtime variability. In run-

time variability, variants need to be added at runtime. For this reason, designing

a SPL for self-adaptive system demands for analyzing the range of variations that

may occur at runtime and adding the variants in the product line. This is also

known as Dynamic Software Product Line (DSPL) [34]. DSPL is an emerging

research area for designing self-adaptive system [34, 35]. However, Hallsteinsen

27

Table 2.1: Support of Design Patters in Four Functions of MAPE-K Loop

Patterns / MAPE-K Functions Monitor Analyze Plan Execute
Observer Yes No No No
Command Yes No No No
Chain of Responsibility Yes Yes Yes Yes
Composite Yes No No No
Bridge No No No Yes
State No No No Yes
Iterator No No No Yes
Proxy No No No Yes
Strategy No No Yes Yes
Decorator No Yes No No

et al. suggested that a mixture of DSPL and SPL may lead to better adapta-

tion capability for a system [34]. In this case, there are two types of binding of

variants which are design time and execution time [34]. At design time, DE and

AE are followed to develop a product. Some variants which are related to static

properties of the environment are also added at design time. At runtime, variants

that are related to dynamic properties of the environment are bound. However,

it is impossible to predict all the variability of the environment and include all

the variants as core assets [34, 7]. So, DSPL also needs to be updated when such

changes occur at runtime. This runtime evolution of DSPL can lead to better

systematic reuse in self-adaptive systems. However, dynamic evolution of DSPL

while ensuring correctness still remains a research problem [34].

2.4.7 Design Patterns

Design patterns are way of designing solution for a problem that occurs over and

over again. Gamma et al. defined design patterns as descriptions of communi-

cating objects and classes which have the aim to solve a general design problem

from a particular point of view [56]. Gamma et al. introduced 23 design pattern

for Object Oriented Systems which are popularly known as Gang of Four (GOF)

design patterns [56]. To achieve a reusable self-adaptive system, the GOF design

28

patterns were applied to each of the functions of the MAPE-K loop [37, 36]. Sale-

hie et al. mentioned that Proxy and Strategy patterns can be applied to effectors

for a reusable design [6]. M.L. Berkane et al mentioned GOF patterns as Technical

patterns [37] and applied these to all the four functions of the MAPE-K loop. Ta-

ble 2.1 shows the GOF design patterns and their applications in the four functions

of MAPE-K loop, as seen from the literature. Each of these, along with their role

in self-adaptive system design, are briefly described below.

1. Observer: Observer pattern works like a “publish-subscribe” mechanism [56].

Observers register to subjects and any state change of the subject triggers

a notification to the observers. This behavior can be used for publishing

context information observed by Monitor to Plan function [37].

2. Command: Command pattern turns each command into an object and helps

to hide the receiver from the invoker of the command [56]. The invoker of the

command only executes a function in the provided command. The receiver is

placed into the command by a client beforehand. The command executes and

result is directed to the receiver. As the command class itself holds reference

to the receiver, the invoker is effectively separated from this concern. In

self-adaptive systems, Monitor function may use sensors to collect context

information [37]. These sensors can be added or removed with the help of

a sensor factory [36]. Here, Command pattern is used to separate sensor

factory from Sensors to achieve better reusability [37].

3. Chain of Responsibility: In this pattern, a client passes request to a “chain

of handlers” [56] but does not know who is going to handle that request.

The request passes through the chain of handler, from successor to successor,

until it finds an appropriate handler. This pattern is applied when a request

is needed to be issued but the receiver of the request is known at runtime.

Chain of Responsibility can be applied in all the functions of the MAPE-K

29

loop [37]. Passing the monitored data to Plan and then triggering adaptation

are a chained sequence of activities, where this pattern is generally applied.

4. Composite: In Composite pattern, objects can be composed into a hier-

archical form [56]. Components, which generally carry common behaviors

of all the classes, are divided into composites and leaves [56]. Composite

classes are composed of multiple leaves or combination of leaves and other

composites. A leaf is a primitive object which is a specific class defining a

particular behavior. Structuring classes in this form of hierarchy makes it

easy for a client to use these because he only uses a component, without

knowing whether it is a leaf or a composite. This pattern can be used in the

Monitor function to acknowledge two types of sensors which are simple and

complex [36, 37].

5. Bridge: This pattern is used when abstraction and implementer needs to be

varied independently [56]. In Bridge pattern, abstraction carries a reference

for the implementer interface. Abstraction is specified into multiple classes

which implements the abstract methods. Implementer is also specified into

multiple classes where these implement a separate method abstracted by

the implementer. Thus, any specification of abstraction can invoke methods

from any specification of implementer with the reference. This is used in

the Executor function where reconfiguration rules and reconfiguration plans

have different variants each but these plans may invoke different rules. Here,

reconfiguration rules take the role of abstraction while reconfiguration plans

take the role of implementer [37].

6. State: State pattern triggers a change in the behavior of an object as soon

as its internal state changes [56]. Generally, the object is called context and

holds a reference of a state class. As soon as client indicates a state change

in the context, the reference is updated by the current state class. In self-

30

adaptive systems, this pattern helps to manage the different internal states

(enabled or disabled) of components [36].

7. Iterator: This provides traversing the contents of an “Aggregate Object”

(Collection or Map) [56] without exposing its internals. Iterator pattern

is used to traverse through adaptation plans that may be buffered in the

Execute phase, while an adaptation is taking place [37].

8. Proxy: Proxy pattern introduces a “placeholder” [56] for an object that

can be used until the object is first referenced. The proxy object holds a

reference to the original object. As soon as the object is referenced for use,

the proxy object delegates the call to the original object. This pattern is

used in the Executor function to define a placeholder for a component when

it is enabled. The original component is used when it is referred for the first

time. This helps to reduce the memory consumption during adaptation [6].

9. Strategy: This pattern helps to enclose a group of algorithms [56] under

an abstraction which can be swapped independently from the client. In

self-adaptive systems, Strategy pattern is used in the Executor function to

support adding, removing and swapping algorithm for components. This

pattern is also used to encapsulate adaptation strategies in the Plan phase

[37, 6].

10. Decorator: This pattern is used when additional behaviors need to be sup-

plement at runtime [56]. Decorators and the component that need dynamic

addition of behaviors, both are abstracted by a common abstraction. Deco-

rator holds a reference to the component and implement the abstract method

from the abstraction. In this method, it adds the extra behavior and delegate

the call to the component itself. In the Plan function, this pattern is used to

dynamically compare the monitored values to thresholds for capturing goal

violations [37].

31

Apart from these, another design pattern that is widely used is Factory Method

Pattern [56]. Although this is not directly related to the MAPE-K loop, it is used

in any phase to create any instance of an object. A class called creator class is

defined where the abstraction of the factory method resides. However, this class

delegates creation of specific objects to its subclasses. From the literature, it is

evident that different design patterns, proposed for self-adaptive systems such as

Sensor Factory, Reflective Monitoring [36] etc. are variants of the GOF patterns.

Readers may refer to [56], where all the 23 GOF patterns have been discussed

thoroughly.

All the discussed design patterns are able to achieve separation of concern.

However, if concerns are scattered across all the classes, GOF design patterns

cannot separate these. Separation of cross cutting concerns [57] are achieved

through Aspect Oriented Programming (AOP). Recent approaches in self-adaptive

system design are considering AOP [57] [35]. This is because runtime variants are

also cross cutting concerns as these variants may have been used in many places of

the business logic code. Laddad mentioned that AOP is based on three concepts

which are joinpoints, pointcuts and advices [57].

1. Joinpoint: A joinpoint is any point of the execution of a program. From the

AOP perspective, a joinpoint is a point in a program where an additional

behavior can be attached.

2. Pointcut: A pointcut is used to nominate a joinpoint, that is, a pointcut helps

to identify joinpoints. For example, a pointcut may specify the pattern of a

method call (joinpoint) where behavior needs to be added.

3. Advice: The additional behavior or code that needs to be added is known

as advice.

The additional behavior addition at certain joinpoint is known as weaving [57].

In case of self-adaptive systems, the additional behaviors or variants need to be

32

added at runtime. This runtime weaving is known as dynamic weaving [57] [15].

Although dynamic weaving has potential to be incorporated with self-adaptive

systems, only few literature have been found to address this [15] [58].

2.5 Summary

Self-adaptive system is a widely researched topic. This is why it is becoming pop-

ular in areas such as sensor networks, transportation, social service-based systems

etc. to build context aware software. The design of self-adaptive system has been

approached from multiple domains such as machine learning, architectural design,

component-based software engineering, control theory etc. In this report, the basic

concepts on self-adaptive system, its development and design have been discussed.

The application areas have been mentioned and approaches from different domains

for developing self-adaptive software have been explored. This discussion can help

to understand the existing works in self-adaptive system design.

33

Chapter 3

Literature Review of

Self-Adaptive System Design

In this report, the existing self-adaptive system design approaches will be dis-

cussed. In the literature, numerous self-adaptive system designs have been pro-

posed. Most of these aim for achieving effective adaptation [32, 10, 54, 59, 12, 11].

However, engineering approaches of self-adaptive software and quality concerns

such as reuse, modularity etc. are recently receiving importance [7, 35, 36]. Based

on the type of techniques followed by these, six types of self-adaptive system design

approaches are visible from the literature which are listed below.

1. Architecture-Based

2. Component Model-Based

3. Control Theory-Based

4. Machine Learning-Based

5. Software Product Line-Based

6. Design Pattern-Based

34

It has been observed from the literature that the third and fourth one are mostly

concerned with the effectiveness of adaptation. The last two are concerned with

reuse and the first two often takes a mixed approach. It is mentionable that,

this classification is not orthogonal. For example, some machine learning-based

approaches such as FUSION uses architectural models which are also used by

architecture-based approaches. In the remaining sections, all these approaches are

discussed.

3.1 Architecture-Based Approaches

Architecture-based adaptation techniques are dependent on architectural models

[38]. These models are analyzed to detect goal violation. Then, the models are

updated according to the adaptation decision. This update is also pushed to

the effectors [21] which perform reconfiguration in the managed system. Several

architecture-based adaptation methodologies have been proposed of which Rain-

bow [9], MADAM [33] and Transformer [60] are the most predominant ones.

3.1.1 Rainbow

Garlan et al. proposed the Rainbow framework [9] based on architectural model

and style [38]. The main goal of Rainbow was to achieve adaptivity while ensuring

reusability of the adaptation component [13]. Along with effective adaptation,

reusability is also important because a reusable adaptation component can reduce

the effort of building a complex adaptive system. However, reusability demands

for an external or separated adaptation component. This component needs a

complete model of the system because without it, this adaptation component

cannot analyze and execute adaptation decisions.

Although an architectural model can fulfil the need for a complete model of

the system, a number of issues arise regarding this. Firstly, different systems have

35

different architectures and so, different models. This variability must be considered

to achieve reusability. Secondly, tailoring the adaptation component to specific

system can be costly because different strategies and effectors need to added. A

reusable adaptation component can reduce this cost. For this reason, adaptation

component should be designed in such a way that reuse can be maximized.

In Rainbow, the whole adaptation infrastructure (adaptation component and

the system) was divided into three parts which were System-layer, Architecture-

layer and Translation infrastructure [9]. System layer infrastructure was related

to the system itself and consisted of probe, effector and a resource discovery mech-

anism [9]. Probes collected data from the system, effectors executed adaptation

decisions and resource discovery checked if a component was available before en-

abling or disabling it. Architecture-layer infrastructure consisted of model man-

ager, gauge, constraint evaluator, adaptation engine and adaptation executor [9].

Model manager provided access to architectural model. Gauges worked like mon-

itors and constraint evaluator analyzed the monitored value for goal violations.

Adaptation engine carried the strategies and determined the actions needed to be

taken for adaptation. Adaptation executor modified the model and passed the

execution decision to translation infrastructure. This infrastructure carried map-

ping from architecture model to specific commands and elements in the system.

So, the decision was turned into system specific entities and passed to appropriate

effectors. Rainbow also used architectural styles to exploit commonality of various

system architectures. Systems with same architectural style could reuse elements

such as rules, strategies, parameters etc. among these to achieve better reusability.

Garlan et al. performed case study on a client-server application and a video-

conferencing system. Effectiveness was evaluated based on performance (latency)

and it was seen that Rainbow performed better that a system without adapta-

tion. However, reusability was evaluated based on lines of code and Garlan et al.

mentioned that a better evaluation was required.

36

Although Rainbow seem to achieve effective adaptation and reusability of the

infrastructure, most of the elements such as strategies, rules, effectors etc. were

different for two different architectural styles. Besides, strategies were hardwired

into the system which made reusability a difficult task. It would have been better

if specific strategies could be plugged in or out dynamically. It is also noticeable

that Rainbow did not include any conflict resolution mechanism for adaptation

decision. For example, if a system decides to add an extra server to improve

performance, cost is also increased. These conflicting scenarios can harm the

quality of adaptation. However, Rainbow exposed an important observation for

self-adaptive system design, which was - combination of commonality and vari-

ability leads to better reuse. It is also mentionable that Garlan et al. observed

adaptation to be effective after a few rounds from the adaptation decision. That

means adaptation itself takes time and resources to execute. So, some sort of re-

source prediction mechanism can lead to better and stable adaptation. However,

Rainbow was extended with resource prediction in [61]. Recently, Rainbow has

been further extended to solve the problem of static strategies in [62]. Even in this

solution, reusability is also an issue because these strategies are system specific

and cannot be reused in another system.

3.1.2 MADAM

Floch et al. proposed the MADAM framework, specifically for adaptation in

mobile devices [33]. In case of mobile devices, adaptation is difficult because of

resource (for example, memory) constraint. Besides, assuring adaptation qual-

ity is also necessary. However, high quality adaptation needs rigorous analysis

and selection of correct variants, which is costly in terms of resource [33]. This

conflicting scenario makes adaptation nontrivial.

In previous approaches such as Rainbow, architecture model was a design-

time artifact. However, as architectures can change at runtime due to adaptation,

37

for example, through an online update of new component deployment, only design

time architectural model is not sufficient. Besides, static strategies do not fit prop-

erly in this context because static strategies cannot represent runtime variation in

resource.

MADAM was similar to Rainbow from the perspective that it also used ex-

ternal adaptation. However, it used a runtime architectural model along with

a design time model. These models were component framework [33] type where

architecture was represented as a set of components. These component could

also be composite, that is, could be composed of other components. The compo-

nent framework model helped to make reconfiguration easy. For example, assume

that a component is composed of some variants which may be used alternatively.

Component framework model helped to attach one of these through a simple com-

ponent addition operation to the model. Floch et al. also introduced component

parametrization [33] where components contained properties representing what

these offered (to user) and what these demanded (resource). A property predictor

function [33] calculated associated utility of a property for a given context. The

notion of utility [12, 33] helped to replace static strategies. In the operational

state, as soon as a context change was detected, the runtime model was analyzed

to find variants with highest utilities. These were selected and applied to the sys-

tem through a reconfiguration. MADAM reconstructed the runtime architecture

at initial deployment and after every reconfiguration to keep the model and the

code synced.

Two case studies were conducted using MADAM on a janitor inspection sys-

tem and a videoconferencing system. They showed the effectiveness of their ap-

proach in a way similar to Rainbow. They also mentioned that their approach

was reusable because of external adaptation, runtime model and replacement of

static strategies. They also conducted a pilot study in industries with MADAM

which helped to validate their approach.

38

The pilot study mentioned in the previous paragraph also showed that defining

utility functions is a difficult task for an architect. Besides, analyzing utility for

a large combination of variants also poses a problem. Thus, MADAM helps to

improve reusability but reduces simplicity and scalability. However, it would have

been better if utility values could be derived. It would also be useful if the con-

text information, rather than utilities, could be used to find the best component,

because context information is always available through monitor.

3.1.3 Transformer

Ning Gui et al. proposed the Transformer framework for increasing reusability and

supporting conflict detection and resolution [60]. Adaptation strategies are system

specific. Besides, all the adaptation strategies are written in a single monolithic

module which makes reuse of these very difficult. However, dividing the strategies

into different independent modules also poses problem because different strate-

gies may suggest conflicting solutions. Thus, achieving conflict resolution and

reusability together is difficult.

It is challenging to compose multiple strategies at runtime to take a single

adaptation decision. This is because finding the most appropriate strategies for

an adaptation becomes difficult. This type of composition may also lead to con-

flicts. It is difficult to detect and resolve these conflicts because strategies are into

multiple independent modules. Another challenge is to modularize strategies in

such a way that reusability is improved.

Transformer separated the strategies based on goals. Strategies of a particular

goal were composed in a module which they termed as Composable Adaptation

Planner (CAP) [60]. Each CAP had a context preference [60] which represented

the preferable environment to use the CAP. Context preferences were represented

as a set of three tuples (context factor, preferable value, impact factor) [60], where

context factor was the context name, preferable value was the preferred value of

39

the context and impact factor indicated the impact of the context on that CAP.

When a context change was detected, each CAP was matched with the context

based on the current context value and preferable value, weighted by impact factor.

The CAP with matching value or Context Matching Degree (CMD) [60] greater

than a threshold was selected. However, if multiple CAPs were selected, a model

fusion [60] element resolved the conflict. Model fusion chose the CAP with highest

CMD if the strategies led to a component addition or removal. If the strategies led

to update of a value, either all the suggested values from the CAPs were averaged

or the highest CMD approach was followed. Finally, the adaptation plans were

executed by effectors.

Transformer was applied on a mobile videoconferencing system. Multiple

CAPs were deployed based on two conflicting goals which were quality of video

and battery level. It was seen that adaptation was effective when Transformer

framework was applied. However, the reusability of the framework was qualita-

tively analyzed by comparing it with other frameworks. No quantitative result

was provided for reusability.

Although this framework provides conflict resolution and strategy reuse, the

strategies are still static entities. Besides, deciding the context preference values

and impact factors is as challenging as deciding utility values. It is also noticeable

that goals may be dependent on one another in a way that one cannot be satisfied

without satisfying the other. Neither of the mentioned frameworks address this

issue. However, one of the most important observations from Transformer is that,

separating strategies based on goals and composing these according to the context

at runtime can improve reusability.

3.1.4 Summary of Architecture-Based Approaches

On the previous sections, architecture-based approaches for self-adaptive systems

which are Rainbow, MADAM and Transformer have been discussed. Apart from

40

these, there are also some other architecture-based methodologies which extend

these frameworks. The resource constraint problem was solved by a Rainbow vari-

ant in [61], static strategy problem was solved in [62] and a language called Stitch

for writing strategies in Rainbow was discussed in [63]. Based on MADAM, an-

other framework named MUSIC [64] was proposed. In all cases, architecture-based

adaptation achieved some reusability because of explicit architectural model and

external adaptation. However, removing static strategies while ensuring simplicity

is challenging in all the proposed architecture-based approaches.

3.2 Component Model-Based Approaches

Component Model-based approaches relies on the managed system following a

specific component model [49]. The component model also need to be dynamic

and reflective for reconfiguration [41]. Using a specific component model makes

system monitoring easier and reconfiguration straightforward. Several component

model-based approaches have been proposed. Fractal component model-based ap-

proach [13], Fractal and dynamic AOP-based integrated approach [15] and the

K-Component framework [41] are the most discussed ones in the literature.

3.2.1 The K-Component Framework

The K-Component framework [41] was one of the earliest approaches for component-

model based self-adaptive system design. In self-adaptive system, reconfiguration

of components, maintaining the integrity of the system is difficult because re-

configuration analysis needs a structured representation of components. Besides,

separating the adaptation code from the business logic code is also important for

achieving reusability. Structured components and separation of concerns both can

lead to reusable and modular self-adaptive software systems.

In a self-adaptive system, adaptations must not lead to a state where the

41

system becomes unstable. It may happen when adaptation is performing reconfig-

uration on a code which the business logic is executing (that is, concurrent access).

For this, reconfiguration protocols are needed. Specifying and maintaining these

protocols is nontrivial because it requires system to be structured in a way so that

it can be easily accessed. Separation of concern is also difficult because of depen-

dencies between adaptation and business logic in different stages such as during

reconfiguration.

K-Component framework aimed to develop self-adaptive system applying both

architecture and component models. The meta architecture model of the system

was described as a graph where nodes were components and their interfaces, and

edges were interactions between components. Adaptation code was written in a

module called adaptation contract [41] which was written in a different language.

Adaptation contracts held condition-action rules which were triggered based on

events. These rules updated the graph when events indicated goal violations. The

component model of the managed system was developed with Interface Definition

Language (IDL-3) [65] from a famous middleware named CORBA [65]. The com-

ponent model allowed structured design of components and helped to the graph

updates to the corresponding components. A structured component model also

helped generating the architecture graph from static analysis of code.

This framework was a conceptual model and was not tested. Although K-

Component framework uses a component model for reconfiguration, it uses static

condition-action rules. Besides, generation of graph from static code may be erro-

neous if any code fragment is dynamically inserted (dynamic binding [56]). Most

importantly, building a system to a specific component model makes reuse within

the same component model easy but between different component model costly.

This is because the full code base need to be refactored to that specific component

model. It would be useful if the amount of refactoring could be minimized.

42

3.2.2 Fractal-Based Framework

David et al. proposed a Fractal-based framework [13] where the goal was to achieve

complete separation of concerns. Reusability is best achieved when two modules

can be separately developed and deployed independently. In case of self-adaptive

system, it is desirable that the business logic is developed separately from the

adaptation logic. At the time of deployment, the business logic can be augmented

with the adaptation logic to produce a complete self-adaptive system. However,

the interaction between these two parts throughout the lifetime of the system

makes complete separation a very difficult issue.

For achieving complete separation of concern, the system must be designed in

a structured way. The reason is unstructured systems lead to uncertainties during

reconfiguration and monitoring. However, it is also necessary that the structured

representations support reflection which is the capability of a system to analyze

itself at runtime [13]. Besides, the system should be adaptable [13, 41], that is, it

should have built in reconfiguration mechanism which is also challenging. Online

deployment for supporting unpredictable scenario also poses a challenge because

most of the component models do not support this.

This framework divided the whole self-adaptive software into three parts which

are Fractal component model, Context-awareness service and Adaptation policies

[13]. The managed system was developed or refactored following Fractal compo-

nent model. This component model was also customized to support online deploy-

ment by extending the controller and enabling interception. Context-awareness

service provided current context information. This was divided into three stages

namely acquisition, representation and reasoning [13]. Acquisition is similar to

monitoring with probes in Rainbow, which collects raw context information. Rep-

resentation structures the information tagging it with corresponding resource.

Reasoning helped to compose synthetic attributes by combining measures and

kept these updated. The context information from context-awareness service was

43

used by adaptation policies to query for goal violations. A goal violation trig-

gered reconfiguration led by these policies which included component addition or

removal according to Fractal.

The framework was tested on a small image browser. Scenarios were considered

around the decision to enable or disable a cache. It was seen that adaptation was

effective and core system could be augmented with adaptation logic. However, no

quantified evaluation was provided.

An interesting observation from this framework is that, under assumptions that

managed system is adaptable, component models lead to maximum reuse. How-

ever, component models may lead to the problems described previously. Apart

from this, what specifically defines an adaptable system and how to incorpo-

rate such adaptability with Fractal was not mentioned. Thus, this framework

is reusable under specific assumptions, but these assumptions themselves lead to

reusability problems.

3.2.3 Fractal and Dynamic AOP-Based Approach

Yuankai Wu et al. proposed an integrated approach with Fractal and dynamic

AOP [15]. As mentioned previously, component model lead to better reuse but full

code base refactoring may be needed. However, this is costly and time-consuming.

Moreover, complete refactoring becomes impossible in case of applications that

have large code bases. The conflicting requirement of following a component

model and refactoring less codes poses a major challenge.

Following a component model and reducing refactoring are completely oppo-

site requirements as mentioned in the previous paragraph. However, crosscutting

concerns further complicates scenario. These are not supported by any component

model and no amount of refactoring can remove these. Thus, addressing crosscut-

ting concerns while following a specific component model requires attention.

This approach proposed a simple solution to this problem. In this technique,

44

the full application was structured with Fractal except the crosscutting concerns.

These were placed inside the code following a traditional AOP-based approach.

Aspect weaving helped to enable or disable these at runtime. While Fractal was

used for component reconfiguration, AOP was used for aspect reconfiguration.

Thus, the integrated model solved the crosscutting concern problem and reduced

refactoring for these concerns.

A case study was performed on a Public Service system for Self-taught Ex-

amination (PSSE). Scenarios covering aspect weaving and Fractal-based approach

were considered. In all the cases, adaptation was achieved. However, no quantified

data and evaluation was provided on effectiveness or reusability.

Although this technique solves the crosscutting concern problem and seems to

reduce refactoring, it is actually not significantly reduced. Often applications carry

only a small number of crosscutting concerns. So, the amount of codes needed

to be refactored remains almost unchanged. This indicates that this problem

is challenging to address. However, Identifying interactions between adaptation

and business logic and structuring only those interacting parts using a component

model may be useful.

3.2.4 Summary of Component Model-Based Approaches

Most of the component model-based approaches discussed here aim to build a

reusable self-adaptive system. However, these require following a specific com-

ponent model all over the code base. So, all of these suffer from the problem of

refactoring large code bases which is impractical due to limited time. It is also

mentionable that, a variant of Fractal was also proposed by David et al. based on

AOP for self-adaptive system [58]. It was also seen from the literature that this

variant also led to similar problems.

45

3.3 Control-Theory Based Approaches

Control theory has been applied successfully in physical systems and different

subjects such as mechatronics, electrical engineering etc [51]. Researchers also

attempted to use control theory for self-adaptive system design because control

theory is mathematically well-grounded [10]. Hierarchical model-based autonomic

control by Litoiu et al. [59], feedback control for Model Reference Adaptive System

(MRAS) by Shaw et al. [32] and control design process mentioned by Filieri et al.

[10] are the most prominent approaches from the literature.

3.3.1 Hierarchical Model-Based Autonomic Control

This model proposed by Litoiu et al. was one of the earliest approaches for self-

adaptive software design based on control theory. One of the main goals of self-

adaptive systems is to satisfy quality of service requirements [59]. Different control

algorithms such as threshold-based control, policy-based control etc. [59] exist for

adaptation. However, none seem to cover all types of situation that may occur

during operational stage. So, achieving quality of service goals in varieties of

system is difficult. Besides, maintaining high service level is also important but

only control theory cannot achieve this. This is because it requires component

reconfiguration and so, update of the managed system model. Control theory

does not support such runtime model change during its execution.

A system can be composed of multiple components where complex goal vio-

lations may occur. In a traditional control-based system, only one component is

controlled and component interactions are ignored. It harms service level and qual-

ity of service. However, designing such multicomponent interaction-based model

is challenging because it requires augmenting the complex control loop with sev-

eral models. Supporting model update with the control loop is difficult because

control theory does not support this, as mentioned previously.

46

The hierarchical model proposed by Litoiu et al. divided the whole system into

a managed component and three levels of controllers attached to it. The managed

component was the core system and consisted of application code, sensors and ef-

fectors. Controllers were structured into three levels namely component controller,

application controller and provisioning controller [59]. Component controllers kept

a model of a component and inspected it for goal violation. The model consisted of

previous inspection and action information. In case of a goal violation, the model

was analyzed to predict future adjustments of the controlled system parameters

based on control theory-based methods. If this failed to adapt the system, the

application controller tried to analyze a component interaction model in a similar

approach to tune system-wide parameters, such as number of load-balancers. If

this also failed, the provisioning controller was used to load another alternative

component through reconfiguration. This method also allowed to use different

control algorithms such as threshold-based and policy-based approaches to build

the performance model [59]. As control theory supported incorporating time with

input and output of the system for prediction, time requirement could also be

attached to achieve timely adaptation.

Litoiu et al. did not provide a quantitative or qualitative evaluation of their

technique. However, their approach indicated that control theory-based methods

were useful and could be incorporated with system models to meet quality of

service goals. As different controllers and system were separated, some reusabil-

ity was also achieved. However, as the controllers contained the models within

themselves and were very tightly coupled, the achieved reusability level was low.

3.3.2 Feedback Control for MRAS

Shaw proposed a feedback control for MRAS where a reference model is kept for

analysis [32]. The model proposed by Litoiu et al. was also for MRAS but it did

not consider visibility of control [32] explicitly. An explicit or visible control loop

47

is important for reusability because it enables separation of concern between a

controller and a system. However, it is also important to know how the control

loop will be realized. It means that all the requirement specification, design and

implementation steps for control loop must be explicit, that is, performed visibly

in a systematic way.

Specifying a feedback control for MRAS along with the steps mentioned previ-

ously is challenging because control theory is generally suited for physical entities.

Control loop design and development leads to questions such as how goals should

be modeled, what should be separated and how to implement controller and sys-

tem in a modular way. As discussed previously, all these questions are difficult to

answer.

The feedback loop by Shaw was composed of a feedback controller and a model

of the system, which the controller used to choose best configuration parameters

for adaptation. From this perspective this model was similar to the one by Litoiu

et al. except that, this model used only one controller. The main contribution

of this technique was to develop a complete software engineering process for feed-

back control-based system. They mentioned four steps for software engineering of

control-based system which are requirement specification, design, development and

testing (verification and validation) [32]. In the requirement specification stage,

goals were identified and quantified, along with time and resource constraints. In

the design phase, the components of the controller and the system were separately

identified and an adaptation strategy (for example, threshold or policy-based) was

chosen. The feedback control-based system was developed in the implementation

stage where controller was not a completely separate entity in the code. In the fi-

nal step called verification and validation, the system was checked for appropriate

error calculation, time management, stability of adaptation etc.

This methodology was not validated with any case study or quantitative eval-

uation. Nevertheless, the approach by Shaw showed the importance of making

48

the control loop a first class entity [32] for effective and reusable system by fol-

lowing explicit software engineering process for it. However, it mentioned that

codes of control and core system can be intermingled. This contradicts in the

way to achieve a reusable controller. Besides, the mentioned four steps are very

conceptual and does not exploit the established mathematical background of the

control theory.

3.3.3 Control Design Process

A formal control-based system design approach based on mathematical support of

control theory was proposed by Filieri et al [10]. As discussed previously, control

theory-based approaches did not exploit the mathematical properties of control

theory to develop a complete design process. Representing a controller mathemat-

ically provides formal foundation for its effectiveness. However, a complete process

for control design is also important along with its mathematical representation in

order to make the control explicit.

Apart from complexities regarding development of a control design process,

establishing a mathematical control theory model for self-adaptive system is dif-

ficult. Software are not precisely measurable as physical entities [10]. As control

theory is based on accurate measurement of system goals, it poses challenges.

Besides, stable and timely adaptation requires time to be incorporated into the

model. However, time is varying and considering it makes the equations differ-

ential ones, which is complex to analyze. How goals, monitored information and

effectors or knobs [10] can be mathematically modeled also introduces additional

complexity.

In this model, Filieri et al. divided the control design process into six steps

namely identify the goals, identify the knobs, devise the model, design the con-

troller, implement and integrate the controller, and test and validate the system

[10]. Goals needed to be quantifiable and measurable. They identified three types

49

of goals namely setpoint, range and minimization or maximization [10]. Setpoint

goal used a reference value to track goal violations. For example, a system may

fix a goal with response time less than 2 nanoseconds. Range goal used number

range instead of fixed value. For example, a system may set a goal with response

time between 2 to 5 nanoseconds. Minimization or Maximization goal aimed to

minimize or maximize any value respectively. For example, minimum response

time or maximum performance can be the goal of a system. The next step was

to identify the knobs that were system configuration parameters that could be

updated. Then, the model was devised where the mathematical relationships be-

tween the knobs and the goals were established. Mathematical equations were

formed involving input variables, state variables and output variables [10]. An-

other technique to form the relationship was to derive a transfer function [10].

Transfer functions were Z-Transformed ratio of input and output functions with

time requirement where the input and output functions were derived from his-

torical data. Z transform [51] was used to convert values from time domain to

frequency domain for removing differential equations. Thus, the result of this

step was a mathematical model which could predict the next knob choice, given

current knob choice. After devising the model, the full controller was designed.

To do this, manual approach could be followed with trial and error to find the

best design. However, an analytical model was proposed which took the previous

transfer function of the core system and integrated it with a transfer function for

the controller. This integrated transfer function was converted to time domain by

reverse Z-transform which produced an equation to predict the next output of the

system, given current knob and error value. This model was implemented using

tools such as Simulink [66]. Finally, verification and validation of the system was

accomplished where different methods such as finite automata-based or statistical

distribution-based [10] approaches could be followed.

A video encoder system was used to demonstrate the different steps of this

50

methodology. However, a complete case study was not provided. Quantitative

evaluation to show how this approach improved controller design was not provided.

The contribution of this paper was to establish the fact that self-adaptive systems

based on control theories can achieve very sophisticated and effective adaptation.

Although the control design process helped to understand the usefulness of control

theories in self-adaptive system design, it was still difficult to reuse the controller.

This is because it was dependent to knobs and core system model. It was also not

discussed how model updates could be handled.

3.3.4 Summary of Control Theory-based Approaches

Although control theory-based self-adaptive systems provide formal assurance [10]

to their effectiveness, complete reuse can be a complex issue. The approaches

discussed here do not seem to address this issue. Apart from these techniques,

varieties of feedback control based systems were also discussed in [5] by Brun et

al. They mentioned that a reusable code base for these self-adaptive systems was

much desired. So, it is evident that control theory-based self-adaptive systems can

be very effective if reusability can be ensured.

3.4 Machine Learning-Based Approaches

Machine learning based approaches use the effect of previous reconfigurations on

goals to find out better reconfiguration approach for goal conformance. Most of

the machine learning based techniques focus on reinforcement learning [11, 54].

However, Esfahani et al. proposed a framework which used supervised learning for

utility function derivation [16, 12]. In the subsequent sections, Q-learning based

method by Kim et al. [11], model-based reinforcement learning technique for self-

adaptive system by Ho et al [54] and FUSION framework [16, 12] by Esfahani et

al. will be discussed.

51

3.4.1 Q-learning Based Method

A model-free Q-learning based approach was proposed by Kim et al. which

aimed to improve planning method for a more dynamic self-adaptive system [11].

Most of the approaches discussed previously used offline planning which are static

condition-action rules. The problem of offline planning is that these rules are hard

to update and it assumes that rules are known in design time. However, as men-

tioned by Kim et al., these rules are rarely known in design time and thus offline

adaptation is often not effective [11]. So, an online approach is needed where best

rules for a condition can be derived dynamically.

For online planning, goals of the system must be known. The goals also must

be quantified to choose the best plan. However, choosing and quantifying goals in

a systematic way is challenging because goals are often abstract. As mentioned

in the previous paragraph, only the best rules need to be chosen according to the

context. This demands for a method where rules can be provided with a feedback,

and rules with highest positive feedback will be chosen. Mathematically modeling

this mechanism is also a problem.

Kim et al. used states and actions to define the planning [11, 54]. States

were represented by a situation, state type, range and architectural model of the

system [11]. For example, if a system has a performance related goal, sudden

low performance can be a situation. Here, performance is the state type and its

range can be high, medium or low. Kim et al. divided the online process in five

parts namely detection, planning, execution, evaluation and learning phase [11].

In the detection phase, when a situation occurred, the corresponding state and its

allowed values were passed to the planning phase. In planning, upon receiving the

state information, a random number ε was assumed between 1 and 0. If it was

less than a prespecified value, an action (that is, reconfiguration) was randomly

chosen. Otherwise, the action which had the highest Q-value (constructed from

learning phase) associated with this state was chosen. This action was executed

52

in the execution phase. In the evaluation phase, a reward function [53] calculated

the reward of this action. This value was used in the learning phase to update the

Q-value of the state-action pair with Q-learning [53].

This method was tested on Robocode [67], a robot battle simulator. A robot

was chosen to test on and a very strong opponent called Antigravity 1.0 was

selected. It was seen that after a few rounds of learning, the chosen robot could

beat Antigravity 1.0 frequently. Kim et al. also tested the exploration-exploitation

[53] issue related to all the reinforcement learning-based methods. They set ε to 0

which meant that only Q-values would be used, and so no exploration would take

place. Using the learned Q-values from first experiment, they showed that the

chosen robot could consistently beat Antigravity 1.0. They also set to 1 and 0.5

to show the effect of full exploration and exploration-exploitation respectively. It

was seen that using exploration-exploitation helps in new situation to adapt and

using only exploration leads to average results.

The Q-learning based method by Kim et al. introduced a way to improve

the effectiveness of adaptation by choosing best actions up-to-date. However, as

mentioned by Ho et al., Q-learning is extremely time-consuming if feature space

is large [54]. Besides, after reconfiguration, the model is updated and so, the

state space changes. So, the previous Q-values become invalid. For this reason,

although this approach is effective for small scale self-adaptive systems, it does

not fit properly for large scale systems and reuse becomes difficult.

3.4.2 Model-Based Reinforcement Learning Technique

Ho et al. proposed a model-based reinforcement learning technique [54] for self-

adaptive system to solve the aforementioned slow learning problem. Model-free

reinforcement learning was used in the literature [11] in order to achieve effective

adaptivity but using an environment model was not considered. Using a model of

the environment helps to learn how the context works. Then, this knowledge can

53

be used to take decisions faster, rather than just relying on continuous upgrade of

reward values.

Although it is clear that a model of the environment can help to make learn-

ing faster, how the model will be constructed is a challenge. According to the

markov decision process [54], transition probability represents the probability of a

specific action leading to a specific state from another. Environment model can be

represented by these transition probabilities because these represent rules of the

environment [54]. In this case, another challenge of deriving these probabilities

appear which is complicated due to uncertainties in the environment.

In this method, a Bayesian approach [54] was followed to construct the tran-

sition probabilities. To state formally, probability P (s′|(s, a)) was calculated for

every state and action pair, where (s, a) represented current state-action pair and

s′ was the next state. For this, the number of times a specific state-action pair

had occurred was calculated from previous information. This number was in-

cremented continuously as new pairs were seen. This was used to calculate the

transition probability with Bayesian approach. Thus, a model of the environ-

ment was available which could be continuously updated. This model was used to

calculate a value function [53] which helped to choose an optimal action or policy.

Ho et al. conducted a case study on cloud servers. The goal was to adapt

response time by adding or removing resource, or by lowering content quality.

The case study showed that this model-based method converges fast and takes

better decisions. However, they also performed another simulation by reducing

training time. It was seen that this method took decisions almost as same as

Q-learning based one but the adaptation was more stable.

Model-based methods provide a time efficient solution to adaptation. How-

ever, model-based methods are computationally expensive as large amount of state

space need to be traversed. Besides, both of these reinforcement learning-based

methods are very system specific by nature. So, these cannot ensure reusability

54

which is necessary to reduce development and maintenance effort. Thus, these

two are effective self-adaptive system algorithms but not appropriate solution for

a reusable self-adaptive software system.

3.4.3 FUSION Framework

Esfahani et al. proposed the FUSION framework [16, 12], a learning-based ap-

proach for self-adaptive system design. In the reinforcement learning-based meth-

ods, time and computational complexity was prevalent. Besides, none of these

methods mentioned about usage of external adaptation which is essential for reuse.

To provide a framework for self-adaptive system that is dynamic and reusable, but

less complex, is difficult. This is because any dynamic reward-based models, as

seen from the literature, lead to large state space [54, 11].

Handling computation complexity in a online learning-based system can be

challenging because the full state space must be considered for learning accu-

rately. However, variants, also called features [16, 12], may have dependencies

among themselves. These features can also be restricted by constraints. These

dependencies and constraints restrict the feature space and can be used to reduce

complexity. However, handling these constraints and dependencies throughout

the adaptation process is an intricate task. Besides, the validity of the learnt

knowledge after reconfiguration need to be assured to.

FUSION consisted of two cycles named learning and adaptation [16, 12]. Learn-

ing discovered relationships between features and metrics. A feature is a variation

point of the software. Metric is usually an equation that measures something, for

example, response time is a metric for performance. Learning consisted of two

activities that resulted in a feature-metric relationship function. The first one

was called observe. Its main goal was to normalize the raw metrics and test the

learned functions continuously. Metrics were normalized to make those compara-

ble. Testing compared a predicted metric value from the learned functions with

55

actual observed values to find error. A wrong decision from the learned function

represented a new pattern and the function needed to be reformed. The next step

of learning was induce where a significance test was performed. The significance

test determined features that had the most impact on each metric. This was nec-

essary because it reduced the number of features to consider. Then, a well-known

learning algorithm such as linear regression [52] or M5 model tree [68] was applied

which resulted in a feature-metric relationship function. Next step was the adapta-

tion cycle which consisted of three activities called detect, plan and effect [16, 12].

In detect step, utility functions were used. These utility functions resulted in zero

when a metrics value exceeded an accepted limit and resulted in a positive value

otherwise. The use of utility function made the detection process mathematically

justified. In planning, shared features that affected common metrics, were fig-

ured out using the functions from the learning phase. As these affected the same

metrics, these also affected the same goals. So, these were conflicting goals. The

target of FUSION was to figure out a selection of shared features that maximized

the utility of the system. This represented an optimization problem and could be

solved by many known optimization techniques such as linear optimization [69].

In this way, FUSION modeled the plan step in a mathematical and implementable

way. The final step was effect and it consisted of enabling or disabling a feature

according to the optimized selection in the plan step. Thus, FUSION delivered a

structured solution to self-adaptive system design which was implementable using

the current technologies in hand.

Esfahani et al. tested their framework rigorously on an online travel reservation

system. They selected the goals of quote response time, travel agent reliability,

quote quality and accountability. For each experiment, they evaluated the tech-

nique on four environments which simulated similar or normal context, varying

context, unexpected event with emerging pattern and unexpected event with no

pattern. Accuracy of the learning and how performance changes with emerging

56

pattern was evaluated. The computation complexity was also tested by comparing

it with a system that selected all the features for metric calculation. Finally, the

goal conformance during the effect step was tested to see whether reconfigura-

tion led to any constraint violation. In all these cases, FUSION performed better

than any other methods in the literature. However, though it was mentioned that

this framework embraced separation of concern, no quantitative evaluation was

provided.

FUSION seems to solve the problems mentioned in previous sections. However,

Esfahani et al. mentioned that the tool developed with this framework needed to

be specialized to different systems for use. This indicates that FUSION, as a

tool, was not reusable. They also did not mentioned how system specific feature,

metric and utilities could be managed for a reusable adaptation logic. Separating

the feature, metric and utilities from the system and inserting these at runtime

may lead to a reusable solution.

3.4.4 Summary of Machine Learning-Based Approaches

It is understandable from the above discussion that machine learning-based ap-

proaches have the dynamism and flexibilities to be used for self-adaptive system

design. However, research challenges still exist. The use of utility functions has

been criticized in [70, 36] because it requires an optimization problem to be solved

for every adaptation which is costly and it is application specific. Apart from this,

machine learning-based approaches are strong candidates for developing effective

and reusable self-adaptive systems.

3.5 Software Product Line-Based Approaches

Software product line (SPL) is an emerging area that aims to achieve system-

atic reuse [55]. The concepts of SPL has recently been found as useful in self-

57

adaptive domain. A few approaches have been proposed based on SPL in order

to achieve reusable self-adaptive systems. In the next sections, Dynamic Soft-

ware Product Line-based approach by Hallsteinsen et al. [34], an approach named

MODELS@RUN.TIME by Morin et al. [35] and the ASPLe framework by Abbas

et al. [7] will be discussed.

3.5.1 Dynamic Software Product Line-Based Approach

Hallsteinsen et al. showed that Dynamic Software Product Lines (DSPL) can be

applied for reuse in self-adaptive systems [34]. A lot of self-adaptive system design

frameworks opt for effectiveness, leaving out the concern for reuse, as seen from

the previous sections. The complexity of developing the adaptation component

demands for reuse which can help build such components by composing existing

implementations.

Although reuse have been achieved for general purpose software with modu-

larization, design patterns, SPL etc., self-adaptive system imposes a major dif-

ficulty regarding managing and managed systems coupling. By the definitions

of self-adaptive systems [23, 12], adaptation components or managing systems

are tightly coupled with managed system by nature. Thus, these are system-

specific. However, adaptation components also contain modules that are common

across projects. For example, comparing with threshold is a common algorithm

in self-adaptive system. So, managing this variability and commonality to achieve

systematic reuse is hard to accomplish.

Hallsteinsen et al. proposed a conceptual model to capture runtime variability

and commonality in self-adaptive system [34]. They suggested using a DSPL to

find and restrict variants that can be attached to variation points at runtime. The

domain engineering phase of DSPL developed common variants for supporting

reuse across different products. The application engineering phase specialized the

variants to specific products. They mentioned that DSPL can be integrated with

58

SPL where SPL helped to build the system at design time and DSPL supplied

variants for runtime [34]. However, they also indicated that the DSPL need to be

updated at runtime, as all variants cannot be foreseen in the domain engineering

phase. This runtime evolution of DSPL was mentioned to be a research challenge

[34].

This model helped to indicate the fact that a DSPL-based approach is possible

for both design-time and runtime reuse. However, this was only a conceptual

model and so, specifics of the model was not discussed. A more detailed model

may help to build a reusable DSPL-based self-adaptive system.

3.5.2 MODELS@RUN.TIME

This method was proposed by Morin et al. and it used DSPL as a core element

of its design [35]. From the previous section, it is evident that DSPL-based ap-

proaches need more detailed design guidelines. More specifically, how the DSPL

variants can be generated and modeled with existing approaches to build a com-

plete self-adaptive system needs to be clarified.

Making DSPL a core part of self-adaptive systems leads to some difficulties.

Firstly, it needs to be answered where the DSPL will be used and how it can be

used. It is also important to specify whether a variant implementation or a variant

model will be used. The first one has the facility of easy deployment but a rollback

in case of an error may not be possible. The second one supports error checking

but needs to be updated frequently.

This technique modeled DSPL as a feature model, with feature dependencies

and constraints. It used a complex event processor [35] to catch runtime events

and notify a goal-based reasoning engine [35]. This component chose the feature

selection that best conformed to goal and derived a DSPL model based on this

selection. Then, an aspect weaver [35, 57], which was used to weave components

to the architectural model, updated the architectural model according to the new

59

DSPL. This model was passed to configuration checker [35] which checked for any

inconsistencies in the model. Finally, the system was reconfigured based on the

architectural model.

This approach was tested on a DCRM system developed by CAS Software

[71]. They tested an event notification where users changed platform (PC to

mobile) and adaptation logic needed to load appropriate logic and interface for

that specific platform. It was seen that adaptation was performed. However, they

did not show whether the adaptation technique chose the best configurations to

address a scenario. They also did not quantitatively show how reuse was improved.

Although MODELS@RUN.TIME developed a complete adaptation mecha-

nism, it restricted only runtime variability using DSPL. It did not mention how

different components of adaptation logic or the full adaptation components can

be reused across products. More specifically, they did not model design-time vari-

ability with SPL. However, integrating DSPL with SPL can lead to better reuse

[34], as mentioned previously.

3.5.3 ASPLe Framework

This framework, proposed by Abbas et al., aimed for integrating SPL with DSPL

[7]. Self-adaptive systems are different from other general purpose systems because

these involve two entities, managed and managing systems that interact continu-

ously. This is why the domain engineering and application engineering processes

of SPL do not fit directly into the self-adaptive system domain. So, SPL needs to

be specialized for self-adaptive systems while integrating it with DSPL.

For self-adaptive systems, two product lines exist for managing and managed

system separately. However, these two product lines are not independent [7].

For example, monitoring needs probes to be present inside the managed system.

This is why achieving complete reuse considering a single product line such as

adaptation product line is impossible [7]. Horizontal reuse or reuse across multiple

60

products is also challenging for the same reason.

In the ASPLe framework, three steps instead of two in traditional SPL was

mentioned namely domain engineering, specialization and integration [7]. In the

domain engineering phase, common artifacts or modules were developed. Here,

artifacts common to all the members within a domain were implemented fully.

However, in case of artifacts which differ from domain to domain were imple-

mented in an abstract way and hooks [7] to specialize these were provided. In the

specialization stage, a domain analysis was performed to see if the domain of the

system and the product line in concern were the same. For same domain, reuse

was straightforward. For different domains, the domain gap was identified and

the hooks were used to derive components specialized to the domain. Finally, the

interaction interfaces between managing and managed system were implemented

in the integration phase. The variants were also derived and implemented in the

same way.

The ASPLe framework was not evaluated to show the effectiveness of the ap-

proach. It is notable that, though this framework combined the SPL and DSPL

in a systematic way, it did not solve the runtime evolution problem of DSPL. Be-

sides, Abbas et al. mentioned that interactions between managed and managing

system at runtime is a major bottleneck for reuse but did not capture this in their

framework.

3.5.4 Summary of Software Product Line-based approaches

As mentioned previously, SPLs to design self-adaptive system is a recent approach.

So, much remains to be explored in this area. The dynamic evolution of DSPL,

integrating SPL and DSPL with self-adaptive system life cycle model and using

SPLs to derive a complete self-adaptive systems are some of the areas of interest

[34]. However, recent SPL and DSPL based approaches do not integrate the

product line with the self-adaptive system design methods. This is required to

61

develop effective and reusable self-adaptive systems. Nevertheless, as seen from

SPL-based approaches to other general-purpose systems, proper use of SPL can

lead to major increase in reuse [55].

3.6 Design Pattern-Based Approaches

Similar to software product line, design pattern is also a recent topic in self-

adaptive software system. Although design patterns were implicitly used in dif-

ferent self-adaptive system designs, these were not catalogued until Ramirez et al.

produced a list of twelve design patterns [36]. Later, Berkane et al proposed a

design pattern-based approach [37], which also used software product line support

to build reusable self-adaptive systems.

3.6.1 Design Pattern Catalogue for Self-Adaptive Systems

As numerous design methods for self-adaptive were proposed, it was much needed

to introduce design patterns for self-adaptive system design. The reuse related

to design pattern is different from product lines. Product lines enable reuse of

product artifacts where design patterns provide solution to a recurring problem,

thus enable reuse of a concept. However, design patterns also seem to take sepa-

ration of concern as an important factor [56]. This is why these can be useful for

developing reusable adaptation component.

As mentioned previously, a number of design patterns were used in different

self-adaptive system design methodologies. However, as these were implicitly used,

making these explicit is an intricate task. Producing a design pattern catalogue

as the one by Gamma et al. [56] also imposed challenges because the components

of self-adaptive system contain dynamic properties and constraints.

Ramirez et al. discussed the design patterns for self-adaptive system in three

classes namely monitoring pattern, decision-making pattern and reconfiguration

62

pattern [36]. Monitoring pattern included sensor-factory, reflective monitoring

and content-based routing [36]. Sensor factory used sensors for monitoring and

these sensors could be simple and composite, consisting of multiple sensors. Re-

flective monitoring used reflection like Fractal [13]. Content-based routing used

a publish-subscribe mechanism to notify goal violations from multiple sensors to

multiple clients. This is similar to mediator pattern listed by Gamma et al. [56].

The decision-making patterns were adaptation detector, case-based reasoning, di-

vide and conquer, architecture-based and tradeoff-based [36]. Adaptation detector

used thresholds for comparison with quantified goal values to detect goal viola-

tions and to trigger actions. Case-based reasoning used strategies like Rainbow [9].

Divide and conquer checked a reconfiguration plan, then divided it into multiple

actions and ordered these for safe execution. Architecture-based pattern used an

architectural model and used the model for reasoning and update . Rainbow [9],

MADAM [33] and all architecture-based models seem to use this pattern. Tradeoff-

based pattern used optimization methods to choose the best action suited to the

context. FUSION [12, 16], MADAM [33] and some other models in the literature

used an utility-based model which correspond to this pattern. Four reconfigura-

tion patterns were introduced namely component inserting, component removal,

server reconfiguration and decentralized reconfiguration [36]. First two patterns

dealt with adding and removing components at runtime. Server reconfiguration

pattern was used to configure parameters of a server at runtime by storing requests

in a buffer. Decentralized reconfiguration pattern was proposed for a distributed

environment and imposed responsibility to each component for their insertion,

removal and maintaining correct state.

Ramirez et al. applied the design patterns in Rainbow [9]. Although no quan-

tified analysis was provided, it seemed that Rainbow could be modeled with design

patterns. They also argued that reusability upto component level was achieved.

The proposed design pattern helps to reuse several components from the man-

63

aging system and achieves component level reuse. However, as mentioned by

Berkane et al, these design patterns were too abstract. It would be useful if these

can be matched with GOF design patterns [56] with which the designers are more

familiar.

3.6.2 Variability Modeling and Design Patterns for Self-

adaptive Systems

Berkane et al. proposed an approach to address variability and reuse by combining

product line and design patterns [37]. The design patterns proposed by Ramirez

et al. [36] were too abstract to be implemented in a self-adaptive software system

[37]. On the other side, product line based methodologies considered variability

and commonality for systematic reuse but did not consider recurring problem-

based reuse like design patterns did. Reusability can further be improved if two

of these can be combined.

Combining design pattern and variability modeling with product lines can lead

to some major challenges. Firstly, during domain engineering phase of product

lines, design patterns also need to be considered for commonality and variability

analysis. This is difficult because design patterns and product lines view reuse from

two perspectives. Secondly, as mentioned in the previous paragraph, the higher

level design patterns need to be broken down into lower level GOF patterns [56].

However, multiple GOF patterns can be used to specify a higher level pattern.

This is why finding the most appropriate one is a challenging task.

Berkane et al. discussed their approach in two stages following product line

development which are domain engineering and application engineering [37]. In

the domain engineering phase, an architecture was developed where MAPE-K

abstraction [21] was broken down to a list of logical design patterns which needed

to be followed to develop its monitor, analyze, plan and effect function [37]. These

logical design patterns were further broken down to a list of technical patterns

64

which correspond to GOF patterns. In the application engineering phase, the

logical patterns to be used were specified from the list according to the application.

Then, the technical patterns were selected based on the application domain and

selected logical patterns.

Berkane et al. applied their proposed approach on a smart home application.

The smart home used sensors to look for events and then triggered an alarm.

They designed the domain engineering and application engineering phase with

this system, followed by a demonstrative implementation of the design patterns.

They measure coupling and cohesion of components to evaluate their approach

[37]. However, no comparative study was provided.

The technique proposed by Berkane et al. seem to improve reusability by

following design patterns from the product line. However, this approach used

only an abstraction like MAPE-K framework for self-adaptation. Thus, it does not

seem to address effectiveness of adaptation. Nevertheless, this is understandable

that if the design patterns can be combined with an effective self-adaptive system

algorithm, it may help to achieve this goal.

3.6.3 Summary of Design Pattern-Based Approaches

As mentioned previously, use of design patterns to address reusability of self-

adaptive systems have just begun. The facility of design patterns is that it can

help to achieve reuse upto components and subcomponents level which the product

line-based approaches lack. However, it is still not addressed in the literature how

to use these design patterns in an effective self-adaptive design methodology such

as FUSION [16] or a control based system [10, 32]. So, addressing this may result

in a reusable and effective self-adaptive system, which is much desired.

65

3.7 Summary

From the discussion of the existing works in self-adaptive system, it is evident that

much work have been done on designing power adaptation component. However,

it is also visible that developing reusable self-adaptive systems are still challeng-

ing. Besides, hiding the complexities of adaptation logic from the developers of

self-adaptive system also seem to be challenging. However, following software en-

gineering principles, the recent approaches to design self-adaptive systems hold

promises to pave the way towards mitigating these issues.

As discussed in 3.3.4, self-adaptive systems also lack tool support. Although

some tools such as FUSION [72], DiVA Integrated Studio [73] etc. exist, but these

either do not support reuse or lack extensibility. Tools for self-adaptive system

development, specifically an adaptation code generation tool can help to achieve

systematic reuse. So, researches that focus on developing reusable adaptation

components that can be generated with such tools can solve the aforementioned

problems.

66

Chapter 4

A Reusable Adaptation

Component Design Technique for

Self-Adaptive System

4.1 Introduction

The existing works on self-adaptive software design shows that achieving reuse

while ensuring effectiveness is difficult. Architecture-based approaches [9, 60] seem

to use static strategies which hinder reuse [33]. Component model-based methods

[13, 15] help to achieve reuse but full code refactoring is needed. Control theory-

based techniques [59, 32, 10] face problems when the model of the system needs to

be updated during reconfiguration. Machine learning-based approaches [12, 16, 11]

seem to achieve effective adaptation but reuse becomes difficult. However, recent

approaches to self-adaptive software design, namely product line-based and design

pattern-based approaches prioritize reuse. However, these does not integrate their

model with an effective self-adaptive system design. In this report, a methodology

for solving these problems is proposed. The aim of this method is to achieve

effective adaptation and systematic reuse.

67

4.2 Reusable Adaptation Component for Self-

Adaptive Systems

To discuss the proposed methodology, it is divided into two parts namely logical

view and structural view. In the logical view, the core algorithm and step by step

process of generating an adaptation component for a specific system have been

discussed. In the structural view, design patterns that enable systematic reuse

have been discussed.

4.2.1 Logical View of The Model

In this section, the logical structure of the model along with the algorithms for its

components is discussed. To ensure the effectiveness of the adaptation component,

an approach similar to FUSION framework [12, 16] has been taken to develop the

adaptation logic. This is because, as seen from the literature, FUSION solves the

problems of static strategies which can help to increase reuse. Besides, FUSION

is efficient because it reduces feature-space.

According to the literature, FUSION did not address reusability and also, the

subcomoponents of the adaptation component were not reusable. This is because

it did not follow any design patterns to enable separation of concerns between

subcomponents. However, the proposed technique addresses these problems. Be-

sides, the proposed methodology also introduces an dynamic AOP-based [15, 57]

integration mechanism to automate the interaction between adaptation and busi-

ness logic. As literature show, this was mentioned to be a research challenge that

still remains unsolved [34]. The proposed technique also incorporates additional

training features along with adaptation features to provide a better prediction

model than FUSION. In the following subsections, the overview of the approach

and the specific parts of it have been discussed.

68

Figure 4.1: The Logical View of the Proposed Methodology

Overview

Figure (4.1) depicts the overview of the proposed method. It consists of two pro-

cess which are Configuration Information Collection (CIC) and Code Generation

(CG). CIC is used to collect information about features, feature dependencies, cur-

rent feature selection, metric and utility functions, and additional training features

(features that will be used for training but cannot be turned on or off) from the

developers. This information is stored in a repository and used in the CG step.

An adaptation logic code is developed beforehand and stored which contains some

concrete implementation that can be readily used, and some abstract parts which

need to be specialized. In the CG step, the adaptation logic codes are gener-

ated by incorporating the information from the CIC step with the aforementioned

adaptation logic code base.

The adaptation logic consists of three parts which are Knowledge Base Con-

struction, Learning and Adaptation [12, 16]. The Knowledge Base Construction

part constructs the knowledge base by randomly selecting features, calculating

metric values for that selection and then, storing these. Learning consists of Ob-

69

serve and Induce [12, 16] where Observe normalizes the raw metric values from

the knowledge base and induce applies learning to find feature-metric relationships

from it in the form of equations. These relationships are used by the Adaptation

part that consists of Detect, Plan and Effect [12]. Detect monitors the system

continuously by reading utility values to track goal violations. A utility value less

than one indicates violation of a goal in this method. In case of a goal violation,

Detect invokes the Plan part that uses the equations from the Learning step to

identify features that are related to this violated goal or metric. Then, all the

metrics that are affected by these shared features are detected from the equations.

These detected metrics correspond to conflicting goals. In this case, an optimiza-

tion problem is generated that considers maximizing total utility of the conflicting

goals, subject to feature dependencies. The solution to this optimization problem

is a selection of features that maximizes the aforementioned total utility. In Ef-

fect, the features are turned on or off, or two features are swapped. The feature

selection along with its metric values are stored in the knowledge base for address-

ing the new pattern. In this way, the knowledge base is gradually enriched. It is

mentionable that Effect may add, remove or swap (that is, turn on, off or swap)

features with two types of components which are AOP-Based Automated Effector

or Customized Effector. The first one uses dynamic AOP [34] to add, remove or

swap components at runtime. The second one uses abstractions developed in the

adaptation logic and specify these to add, remove or swap components. The rea-

son of using two approaches, instead of one, is that the first one is applicable when

the business codes use factory methods and interfaces for feature initiation and

interaction respectively. If this is not the case, second one can be used. As the

Learning and Adaptation part interacts with the features of the system through

Effect, the whole adaptation logic and the business logic are kept separate and

reusability of the generated codes is ensured. In the following sections, the whole

process and the components are discussed in details.

70

Table 4.1: Constraints for Feature Relationships

Feature
Type

Feature
Constraint

Feature
Relation

Optional

∑
∀fn∈zero-or-one-of-group

fn ≤ 1 zero-or-one-of-group

Mandatory

∑
∀fn∈exactly-one-of-group

fn = 1 exactly-one-of-group

Mandatory

∑
∀fn∈at-least-one-of-group

fn ≥ 1 at-least-one-of-group

Optional

∑
∀fn∈zero-or-all-of-group

fn mod n = 0 zero-or-all-of-group

Depends on child features ∀child ∈ Shared Featuresfparent − fchild ≥ 0 parent child relation

Configuration Information Collection

In this step information about the system is collected. All the information that are

collected is shown in Figure 4.2. These information are available because the busi-

ness logic is assumed to be already developed. Information about The features and

the classes that implement those are collected. Feature dependency information

which are dependent features and their dependency types are collected. Esfahani

et al. mentioned five dependency types which are mentioned in table 4.1. [12].

These dependency types are described below.

1. zero-or-one-of-group: This resembles that more than one features cannot be

enabled.

2. exactly-one-of-group: This means that exactly one feature can be enabled at

a time in the feature group.

3. at-least-one-of-group: This dependency indicates a mandatory relationship

where at least one of the features in the group must be enabled.

4. zero-or-all-of-group: It indicates that either all or none of the features will

be turned on.

71

Figure 4.2: Configuration Information

5. parent child relation: This means that enabling a specific feature (parent

feature) requires all other features of the group to be enabled.

This step also collects metric and utility information. In case of metric informa-

tion, developers need to specify metric names, metric types (that is, whether the

metric needs to be maximized or minimized for goal conformance) and the classes

and methods that calculate these. The proposed methodology uses the metric

types (maximize or minimize) to generate the utility equation. For maximization

goals, where the metric values need to be more than the provided threshold, the

generated equation has the form similar to Equation 4.1.

Utilityn = Metricn − Thresholdn (4.1)

Where Utilityn is the utility value, Metricn is the metric value and Thresholdn

represents the metric threshold value for the nth metric.

72

For minimization goals, the metric values should never cross the provided

threshold value. For this, if a minimization type is provided, an equation such

as Equation 4.2 is produced.

Utilityn = Thresholdn −Metricn (4.2)

These equations are stored as utility equations with the utility information. It is

notable that, the existing system needs to expose an API for metric calculation

which is a common assumption in self-adaptive system [12, 9]. This is also a valid

assumption because there is no known way to automatically connect the system

to an appropriate metric calculation logic without analyzing its context manually.

For utility information, the utility names and corresponding metric names are

required.

The current feature selection is provided as a name-value pair where the value

is either 1 or 0 (enabled or disabled respectively). The current feature selection is

needed when the system starts for the first time and an initial feature selection is

required for knowledge base construction. The additional training features, which

are features that are needed to accurately predict a specific goal, are also given.

It is notable that these features must have a corresponding metric provided in the

aforementioned metric information collection step. The metrics calculate current

values for these additional features which are used for both knowledge base con-

struction and adaptation. As an example, consider a scenario where performance

needs to be adapted. To predict the performance goal value, service time, requests

per second etc. can be used. These predictors or features cannot be turned on

or off from the application for being properties of the server machine. However,

these must be incorporated for better prediction of goal values. While generating

the previously mentioned optimization problem, the current values of these must

be considered for better accuracy of the solution. This is why these additional

73

training features are mandatory for a more effective adaptation mechanism. It is

notable that the consideration of additional training features is absent from the

FUSION framework.

It is to be mentioned that all the properties mentioned in Figure 4.2 is not

always required. For features, in case of AOP-Based Automated Effector, all the

properties are required. For other customized effectors, only the feature name is

needed and the other fields can be left blank. In the metric information, the class

and package information are required only when a class based metric API has been

provided by the business logic, that is, the metric information can be obtained by

method calls from classes. In other cases, where metric API is not a class, only

the metric name and full API path need to be provided. All these information are

stored in a data repository for further use in the subsequent steps.

Code Generation

This step produces the adaptation logic codes and provides support for integrat-

ing adaptation and business logic components. Adaptation component along with

its specific parts and abstract hooks are developed and stored in the code reposi-

tory. Code generation is a task of replacing and updating configuration elements

of these codes using the information from the data repository. The following sub-

sections discuss the adaptation logic in this CG step in details. The adaptation

logic codes, as mentioned before, consist of three types of components which are

Knowledge Base Construction, Learning and Adaptation. Here, the Learning and

the Adaptation step follow a similar approach discussed by Esfahani et al. [12].

However, additional training features have been incorporated with the FUSION

model to provide more effective prediction.

Knowledge Base Construction When the application starts for the first time,

the knowledge base is empty. In this case, a Knowledge Base Construction compo-

74

nent is provided. This component can be run individually. To use this, the system

needs to be put in an operational environment, real or simulated. After running

this component, it will randomly select features and these selections are stored in

the knowledge base along with the corresponding metric values. Thus, a primary

knowledge base is constructed which is later used for Learning and Adaptation.

It is mentionable that machine learning methods do not work if there is no

data. The Knowledge Base Construction helps to solve this problem. The only

assumption is that, the system needs to be put in an environment that represents

its real execution environment. Often, this is not possible but creating a simulation

of the operation environment is possible with modern tools in hand. For example,

Apache JMeter [74] is a tool that can simulate system load with multiple users.

This is why the assumption is valid.

To generate data for knowledge base, at first the feature groups are considered.

For each feature group, features are selected randomly (turned on or off randomly)

while maintaining the constraints mentioned in Table 4.1. These feature groups are

merged to get a full feature selection set. Then, for each of the metrics, the metric

values are collected. It is mentionable that the additional training features, as

mentioned previously are also calculated by their corresponding metric values. The

feature selection and metric values are then joined and thus, a data is generated.

This process is continuously run in a simulated environment to gradually enrich

the knowledge base.

Learning Learning component consist of Observe and Induce components. These

two are described below.

1. Observe: It normalizes or standardizes the raw metric values from the knowl-

edge base. Normalization brings all metric values within the same range

(generally 0 and 1). For normalization or standardization, either of Equa-

75

tion 4.3 or 4.4 can be used [16, 12, 52].

xnorm =
x− xminimum

xmaximum − xminimum

(4.3)

xnorm =
x− µ
σ

(4.4)

Here, in Equation 4.3, xnorm represents normalized value of x and xmaximum

and xminimum represent minimum and maximum values of x respectively.

In Equation 4.4, µ is the average and σ is the standard deviation of the

data. Observe also checks if the knowledge base contains all the patterns of

the environment as training data that are required for accurate adaptation.

This is checked by observing the number of failed adaptations and checking

whether this exceeds a predefined threshold In this case, a new pattern is

considered to have appeared and learning is conducted again.

2. Induce: Induce does two tasks which are feature selection and executing

the learning algorithm. First, a significance test [12, 16] over the knowledge

base is performed. Significance test selects those features for each of the

metrics that have a significant influence on these. Using these features, a

learning algorithm derives the feature-metric relationship equations. Linear

regression algorithm [52] has been used as the learning algorithm because it

converges fast [16]. A typical output from this training phase is like Equation

(4.5).

Metric = k1 × Feature1 + k2 × Feature2 − k3 × Feature3 − k4 × AdditionalFeature1

(4.5)

Where k1, k2 etc. indicate constants, Metric is any metric and Feature1,

Feature2 etc. are feature state which can be zero or one (enabled or disabled

respectively). AdditionalFeature1 is the additional feature considered for

training and which cannot be turned on or off. It is also mentionable that for

76

using the calculated value from this equation, it needs to be denormalized

using a reverse process of normalization [12, 16]. This is because without

denormalization, it will not represent values in the real range of metrics.

Adaptation

The adaptation part is comprised of three components which are Detect, Plan and

Effect. These components are mentioned below.

1. Detect: The system needs to adapt whenever there is a violated goal. Vio-

lated goal is detected with the help of utility functions. From Equation 4.1

and 4.2,it is clear that the utility function return a values less than one in

case of a goal violation. This property is used to detect goal violations in

the proposed technique. These violated goals are passed to the next stage

namely Plan.

2. Plan: Detection of goal violation invokes Plan component. At Learning,

feature-metric relationships have been identified. These relationships are

now used to find the related features with the violated goals which are called

shared features [12, 16]. These features may also affect other goals which are

known as conflicting goals [12, 16]. These are conflicting because if a selection

of features affects one of these goals, the other ones are affected too. The

system needs to select a set of features that maximize its utility given the

corresponding conflicting goals and shared features. Equation (4.6) can be

used for this purpose.

F = maximize
∑

Fs∈shared features
∀conflicting goals t

Ut(Mt(Fs)) (4.6)

However, as additional training features are used to generate feature-metric

equations in the Learning component, The variables for the additional train-

77

ing features also occur in the utility function equations. As these training

features are external to the system and cannot be selected or turned on or

off, the current training feature values are collected at runtime using their

corresponding metrics. This current values are used in place of their repre-

sentation variables in all the equations.

From the above discussions, it is evident that an optimization problem needs

to be constructed for planning where the features can be represented by 1

or 0 (on or off). So, this can be solved using Integer Linear Programming

[69] with binary variables. However, none of the utility functions should

have value less than one, because it will trigger goal violations. The system

also must not violate any feature dependencies mentioned previously while

optimizing. Besides, as mentioned in the previous paragraph, the additional

training feature values need to be equal to their current values. So, if f1

and f2 are shared features and fex is the additional training feature, a valid

optimization problem would be as mentioned in Equation (4.7).

Fselection = maximize(Ut1(Mt1(F) + Ut2(Mt2(F))

Subject To

Ut1(Mt1(F) > 0

Ut2(Mt2(F) > 0

f1 + f2 = 1

fex = 2

Where

Mt1(F) = 2.77× f1 − 1.75× f2 + fex

Mt2(F) = 2.11× f1 + 3.35× f2

(4.7)

78

Fselection is the selected feature string after the optimization problem is

solved. This feature selection string indicates the features needed to be

turned on or off or swapped to satisfy all goals as much as possible.

3. Effect: This component executes the feature selection into the system. Ef-

fect can be done with two components as mentioned previously which are

AOP-Based Automated Effector and Customized Effector. In AOP-Based

Automated Effector, at first, the interface information of every feature is

gathered. To turn off a behavior, a mock object, which is an object that sim-

ulates the behavior of a real one, is created and returned from the factory

method of that feature. The mock object only simulates the behavior but do

not perform any actions and so, the feature is effectively turned off. To turn

on a feature, reflection [13] is used to instantiate the feature class at runtime.

Then, dynamic AOP is used to intercept the return value of a feature factory

method to return this instantiation. To swap two features, the instance of

the one that will be turned on is returned from both of the factory methods

with the help of the around advice [57]. However, this technique assumes

that the instantiation of features have been kept separate from the business

logic using factory method pattern. The dependent features also need to be

coded to the interface which is a very common practice.

From Table 4.1, features can be optional or mandatory. Although in ideal

case, optional features should be toggled without any side effect, often op-

tional features show dependency with other operational components due to

implementation issues. This is known as Optional Feature Problem [75]. To

address this issue, the Customized Effector is introduced. Customized ef-

fectors provide hooks like product line-based approaches to specialize these

to the application. Generally, the developers need to add codes for adding,

removing and swapping components by extending an abstraction.

79

As features are interdependent, while enabling or disabling these, the depen-

dency constraints must be maintained. For this purpose, after the feature

selection string is produced, for every feature, it is scanned to find any vi-

olation of constraints mentioned in Table 4.1. Any violation represents a

new pattern. This feature selection string is rejected and learning is again

performed to capture this pattern.

It is evident from the above discussion that a reusable adaptation component

can be generated following the proposed methodology. Although some specializa-

tion may be needed, it is much smaller than refactoring the full codes. So, along

with effective adaptation following FUSION [12, 16], reusability is also ensured.

In the next section, the structural view of this model is discussed which ensures

subcomponent level reuse.

4.2.2 Structural View of The Model

In the structural view, the subcomponents of both learning and adaptation com-

ponents have been organized with GOF design patterns [56], so that these can

be reused or customized easily. In the Learning component, from Figure 4.3,

Decorator pattern has been used for prepossessing before applying the learning

algorithm. Normalization and feature selection have been used as decorators to

preprocess the training data in the knowledge base. Different learning algorithms

have been represented by the Strategy pattern. Decorator pattern has been used

between Preprocessing and Learning because each process transforms data with-

out completely relying on the other which clearly indicates that decorator pattern

should be used. Finally, the Observer pattern has been used between Threshold-

BasedObservee and the Decorator interface for observing training inaccuracy and

re-perform training.

In the adaptation component, from Figure 4.4 Observer pattern is used be-

tween detect and plan interface (Monitoring and Analyzer). Decorator patter

80

Figure 4.3: The Structural View of Learning Component

have been used to gradually decorate the optimization problem with constraints

and the objective function. To support multiple optimization algorithm, optimiza-

tion solver was designed with Strategy pattern. Between Effect and Plan interface,

Observer pattern has been used. Finally, effectors have been integrated with fea-

ture selection validator using command pattern. In the following subsections, all

these design patterns and their applications in the proposed approach have been

discussed in details.

Learning

Learning component contains strategy, decorator and observer patterns. The

structural view of these have been shown in Figure 4.3

81

Figure 4.4: The Structural View of Adaptation Component

1. Strategy Pattern: Strategy pattern is used when algorithms need to be var-

ied independently. Adding an algorithm involves only implementing the ab-

straction and passing its reference to the invoker of the algorithm. Thus, it

promotes customizability and reuse. This is why this pattern has been used

to support reuse and customization of the learning algorithm and observe

mechanism.

2. Decorator Pattern: Decorator patter is used when functionalities need to be

added dynamically. Decorator pattern has been used for the preprocessing

logic, that is, to pass the normalized data to the feature selection component

and then pass the selected features to the learning algorithm. Decorator

pattern helps to add any object within the flow easily. For example, if

anyone wants add missing data handling, he needs to create a class and insert

82

it between normalization and feature selection which involves changing only

two references.

3. Observer Pattern: This is used when a notification scheme is needed. For

this, it has been used to notify the learning process to start again because

a new pattern has arrived. To achieve this, an interface need to be present

between normalization, feature selection, learning algorithm combined, and

the observee.

4. Facade Pattern: This pattern provides a single interface to a set of classes

or interfaces. This pattern has been used to construct an interface with

normalization algorithm, feature selection and learning because it it neces-

sary for communicating with the threshold-based observee through observer

pattern.

Adaptation

This component uses Strategy, Observer, Decorator, Command and Facade pat-

terns. The uses of these patterns in the adaptation component is described below.

1. Strategy Pattern: This is used to support customizability and reuse of dif-

ferent optimization algorithms, as mentioned previously.

2. Observer Pattern: This is utilized to route goal violation indication to the

Plan interface which is a facade interface.

3. Decorator Pattern: The Decorator pattern has been used to add attributes

to the optimization problem when adaptation is required. The feature con-

straints, utility constraints, additional training feature constraints and the

objective function is added to build a complete optimization problem. Then,

it is passed to an optimization algorithm for receiving an optimal feature se-

lection. As the problem is build at runtime gradually, Decorator pattern is

83

suitable for this purpose.

4. Command Pattern: Command pattern is used when request need to be

queued and for separating caller and receiver of a request. So, this is used

to capture the feature selection from Plan facade interface, analyze it and

pass to the effectors only if it is valid. This helps keeping the effectors and

Plan components separate.

5. Facade Pattern: It has been used to produce an interface between Detect

and Plan, and an interface between Plan and Effect.

It is mentionable that the design patterns which are mentioned in the previous

sections were chosen based on analyzing the existing works on self-adaptive system

design. Applying design patterns for self-adaptive system design helps to maintain

a consistent structure of the adaptation component. For this reason, adding or

removing any part of the adaptation component becomes easier. The proposed

methodology incorporates design patterns as a part of the adaptation component

design mechanism to ensure that systematic reuse can be achieved.

4.3 Summary

From the above discussion, it is evident that the proposed approach addresses

both reusable and effective adaptation. The machine learning based technique

discussed in 4.2.1 can help to achieve adaptation which is efficient and effective.

This technique helps to generate codes for any application if the mentioned inputs

are provided. However, it does not guarantee that different subcomponents of the

adaptation logic are reusable. This is achieved through design patterns, as dis-

cussed in 4.2.2. Thus, the proposed technique improves on the existing techniques

in the literature by ensuring both component and subcomponent level reuse while

preserving the effectiveness of adaptation.

84

Chapter 5

Implementation and Result

Analysis

A reusable self-adaptive system design has been a research challenge as seen from

the literature [12, 5, 4]. A reusable adaptation component design mechanism was

proposed in the previous chapter. The goal was to improve the overall reusability

of the adaptation component while preserving the effectiveness of adaptation. In

this chapter, the result analysis for the proposed mechanism has been shown. The

proposed method was validated by performing a case study on Znn.com [17, 4].

The model was tested using reusability metrics such as Lines of Code (LOC), Mes-

sage Passing Coupling (MPC) [2] and Lack of Cohesion of Methods 4 (LCOM4)

[3]. The code generated by the mechanism was deployed in an operational envi-

ronment for Znn.com. In this environment, five servers were connected to a load

balancer and the main goal was to keep the response time within a specific limit

while preserving a minimum content quality and a maximum cost. The response

time was observed in a high load situation to see if adaptation occurs. In all the

cases, the proposed method ensured reusability and effectiveness for the performed

experiments .

85

5.1 Implementation Details

The proposed methodology was implemented in Java using Eclipse Mars 2 Inte-

grated Development Environment (IDE) [76]. An Object Oriented Programming

language such as Java provides extensive support for polymorphism, inheritance

and encapsulation which are necessary for reusability. This is why it was used to

implements the approach. The following tools and libraries were used to develop

the system.

• Weka 3.7.3 [77]: Weka is a data analysis tool that provides support for

preprocessing and analyzing data. Weka also provides API to access different

training algorithms such as linear regression, M5P etc. Weka was used to

provide a simple structure to the Training component of the algorithm.

• EvalEx [78]: This is a simple equation evaluator for Java. This was used to

evaluate the value of the utility from the utility equation.

• Commons IO [79]: Commons IO or Apache Commons IO is a library that

implements Input-Output (IO) functionality for Java based systems. This

library was used to access and modify files.

• JUnit 4.12.0 [80]: JUnit is a library that helps to write unit tests in java.

So, it was used to write unit tests for the modules in the system.

• Mockito 1.9.8 [81]: Mockito helps to create mock objects which is useful to

simulate behavior in JUnit tests. This library was also used for this purpose

in the unit tests of the system.

The implementation was executed on an operating system with following config-

urations.

• Operating System: Ubuntu 14.04 LTS

• RAM: 8.00 GB

86

Listing 5.1: Feature XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>
2 <c on f i gu r a t i on>
3 <f e a t u r e>
4 <featureName>f e a tu r e1</ featureName>
5 <featureClassName>FeatureClass1 </ featureClassName>
6 <featureFactoryClassName></ featureFactoryClassName>
7 <featureFactoryMethodName></ featureFactoryMethodName>
8 <f ea tureClas sPath>/home/path/FeatureClass1</ featureClas sPath

>
9 <featurePackageName>org . path . p r o j e c t</ featurePackageName>

10 <f eatureFactoryPackage></ featureFactoryPackage>
11 <f eatureFactoryClassPath></ featureFactoryClassPath>
12 </ f e a tu r e>
13 <f e a t u r e>
14 <featureName>f e a tu r e2</ featureName>
15 <featureClassName>FeatureClass2</ featureClassName>
16 <featureFactoryClassName>/home/path/FeatureClass2</

featureFactoryClassName>
17 <featureFactoryMethodName></ featureFactoryMethodName>
18 <f ea tureClas sPath></ featureClas sPath>
19 <featurePackageName>org . path . p r o j e c t</ featurePackageName>
20 <f eatureFactoryPackage></ featureFactoryPackage>
21 <f eatureFactoryClassPath></ featureFactoryClassPath>
22 </ f e a tu r e>
23 </ c on f i g u r a t i on>

• CPU: 3.30GHz Intel Core i3 Processor

• Platform: 32 bit

To execute the implementation, attributes of features, metrics, utilities, feature

dependencies, training features and current feature selection need to be provided.

These information are collected using the tool interface of the implementation.

The tool writes these in the xml files as shown in Listing 5.1-5.6 . It is seen

from the feature XML file in 5.1 that feature name, class name, factory class

name, factory method name, class path, package name, factory package name

and feature factory class path can be provided. However, all these information is

needed only if AOP based effector is used. If customized effectors need to be used,

only feature name needs to be mentioned and other fields can be left blank.

87

Listing 5.2: Metric XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>
2 <c on f i gu r a t i on>
3 <metr ic>
4 <name>metr ic1</name>
5 <className>Metr icClass1</className>
6 <methodName></methodName>
7 <f u l lPa th>/home/path/Metr icClass1</ fu l lPa th>
8 <packageName>org . p r o j e c t . metr ic</packageName>
9 </metr ic>

10 <metr ic>
11 <name>metr ic2</name>
12 <className>Metr icClass2</className>
13 <methodName></methodName>
14 <f u l lPa th>/home/path/Metr icClass2</ fu l lPa th>
15 <packageName>org . p r o j e c t . metr ic</packageName>
16 </metr ic>
17 <metr ic>
18 <name>metr ic3</name>
19 <className>Metr icClass3</className>
20 <methodName></methodName>
21 <f u l lPa th>/home/path/Metr icClass3</ fu l lPa th>
22 <packageName>org . p r o j e c t . metr ic</packageName>
23 </metr ic>
24 </ c on f i g u r a t i on>

Listing 5.3: Feature Dependencies XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>

2 <c on f i gu r a t i on>

3 <f eaturedependency>

4 <group>exact ly one of group</group>

5 <f e a tu r e1>f e a tu r e1</ f e a tu r e1>

6 <f e a tu r e2>f e a tu r e2</ f e a tu r e2>

7 </ featuredependency>

8 </ c on f i g u r a t i on>

From the metric XML file in 5.2, it is seen that metric name, class name,

method name, full path and package name can be given. In the implementation,

two types of metric calculation scheme is supported which are class-based and

url-based. The XML file shown in Listing 5.2 is for a class-based metric calcula-

tion scheme. Class-based metric calculation scheme demands a method from the

88

Listing 5.4: Utility XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>
2 <c on f i gu r a t i on>
3 <u t i l i t y>
4 <name>u t i l i t y 1</name>
5 <metricName>metr ic1</metricName>
6 <polynomial>0 . 5 metr ic1</ polynomial>
7 </ u t i l i t y>
8 <u t i l i t y>
9 <name>u t i l i t y 2</name>

10 <metricName>metr ic2</metricName>
11 <polynomial> 3+metr ic2</ polynomial>
12 </ u t i l i t y>
13 </ c on f i g u r a t i on>

Listing 5.5: Initial Feature Selection XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>
2 <c on f i gu r a t i on>
3 < f e a t u r e s e l e c t i o n>
4 <featureName>f e a tu r e1</ featureName>
5 <value>0</ value>
6 </ f e a t u r e s e l e c t i o n>
7 < f e a t u r e s e l e c t i o n>
8 <featureName>f e a tu r e2</ featureName>
9 <value>1</ value>

10 </ f e a t u r e s e l e c t i o n>
11 </ c on f i g u r a t i on>

business logic to calculate the metric value. Url-based scheme reads metric values

from a specific url. It is clear that, for url-based scheme, class name, method name

and package name are not required and so, these can be left blank in the metric

information.

For utilities, as shown in Listing 5.4, the utility name, the corresponding metric

and threshold value need to be provided. From the utility XML file, it is evident

that the threshold is converted to a utility equation to be used in the adaptation

algorithm as mentioned in the Methodology chapter. In case of feature dependen-

cies, as given in Listing 5.3, the group name and features under the dependency

groups need to be given. Listing 5.6 displays the training features, which are extra

features that will be considered for training along with the previously mentioned

89

Listing 5.6: Training Feature XML File

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>
2 <c on f i gu r a t i on>
3 <t r a i n i n g f e a t u r e>
4 <featureName>t r a i n i n g f e a t u r e 1</ featureName>
5 <f e a tu r eMet r i c>metr ic3</ f ea tu r eMet r i c>
6 </ t r a i n i n g f e a t u r e>
7 </ c on f i g u r a t i on>

features. The extra feature name and its corresponding metric are provided in the

XML file. Finally, for the current feature selection in Listing 5.5, the feature name

and its selection status, that is whether it is on or off, is mentioned by writing 1

or 0 respectively with the corresponding feature.

5.2 Case Study: Znn.com

Znn.com is a model problem which was added by Cheng et al. in the exempler

repository of the Software Engineering for Self-Adaptive Systems community [17].

The Znn.com system has been used in numerous papers [4, 82, 83, 61, 84] for

evaluating the adaptation approaches. This is why Znn.com has been used to

assess the proposed methodology. In this section, the architecture and adaptation

challenges of Znn.com will be discussed.

Znn.com is a news serving application which provides textual and multimedia

based news to its users. According to the Znn.com specification, it follows a N-tier

style where a load balancer is connected to a server group. The server group can

contain one to many servers. The clients send their request to the load balancer

and it distributes the requests among the servers in the server group. The whole

architecture is shown in Figure 5.1.

The business goals of Znn.com is related to performance, content fidelity or

quality and server cost. The main goal is to provide service with a minimum

content fidelity and within the budget while maintaining a minimum performance.

90

Figure 5.1: N-tier Architecture of Znn.com

However, these goals are related to one another. For example, if content fidelity

gets higher, server performance will decrease because the response size is larger

for serving higher quality contents. So, a new server needs to be added from the

server group. However, servers cannot be added infinitely because the total cost

of all the added servers must fall within a specific range. All these scenarios make

satisfaction of multiple goals a nontrivial task. This is why Znn.com provides the

scope to incorporate a self-adaptive mechanism to optimally work under multiple

goals.

Another scenario where Znn.com demands adaptation is when the news website

is under a high load situation, also known as Slashdot Effect. As mentioned by

Cheng et al. [4], if a website is featured in slashdot.org [85], it gets crowded with

visitors within a few hours or days. Due to hit from multiple users, the website

might be temporarily down. To partially solve the scenario, some applications

such as Gmail request the users to reload later when such a high load situation is

detected. However, this is not expected because it hampers the service level of the

91

Figure 5.2: Deployment Diagram of Znn.com

application. For this reason, a self-adaptation scheme is required which repairs the

system and brings it closer to the three goals mentioned in the previous paragraphs.

5.3 Experimental Setup

Znn.com was deployed on five virtual machines which were connected with another

virtual machine acting as a load balancer. Two more virtual machines were used

where one helped to collect metric information and the another helped to simulate

user requests. The overall architecture of this deployment environment has been

shown in Figure 5.2. Each of the virtual machines had the following configuration.

• Operating System: Ubuntu 14.04 LTS

• RAM: 512 MB

• CPU: 3.30GHz Intel Core i3 Processor

• Platform: 32 bit

• Virtual Disk: SATA Controller 8 GB

92

The implementation of Znn.com was done with PHP and MySQL. The effectors

were written in Bash scripting language [86]. In each of the server machines,

apache2 web server was used to deploy Znn.com. Apache JMeter was used to

simulate user requests in the user requests simulation environment. In the metric

collection environment, PHP codes were deployed using apache2 web server which

were used to calculate the metric values of performance, cost, content fidelity and

some additional training features.

In the simulated environment, response time was calculated using Queueing

Theory where the M/M/c queue model was used [87]. A system where multiple

requests arrive and are distributed among c servers can be represented by the

M/M/c queue model. As calculating real response time from the environment

may cause high network overhead and so, may not show the effectiveness of the

proposed technique, the response time assumption from the M/M/c queue model

was used. The Queueing theory based response time calculation utility provided

in the Rainbow framework implementation in [17] was used in this purpose. It

receives request arrival rate, service time, content fidelity and number of active

servers as input and provides the response time. This indicates that arrival rate

and service time can be used as additional training features.

Before starting the experiment, the features and feature dependencies of Znn.com

were specified. As features are entities that can vary and can be toggled (turned

on or off), it is evident that, every server is a feature. This is because adding a

server means turning it on and removing means otherwise. According to Cheng et

al., content fidelity has three types which are high, low and text [4]. Each of these

are features because these can be toggled. It is also noticeable that at least one of

the servers must be turned on to serve contents. This is why the server features

belong to at-least-one-of dependency group. Besides, exactly one of the content

fidelity features can be selected and so, these belong to exactly-one-of feature

dependency group.

93

After choosing features and feature dependencies, metrics and utilities were

chosen. Response time, content size and number of active servers were used to

calculate performance, content fidelity and cost respectively. The threshold for

each of these which are maximum response time limit, minimum content fidelity

and maximum number of active servers respectively, were chosen. It is under-

standable that this threshold will vary in different system and in different context

because the environment in which a software operates in, is vastly dynamic. For

additional training features, service time and request arrival rate were chosen.

Finally, current feature selection was provided in the format mentioned in Sec-

tion 5.1. Using all these information, adaptation logic codes were generated and

assessed for reusability and effectiveness of adaptation.

In order to access effectiveness, the system was put under a situation represent-

ing the Slashdot effect. To do this, the experiments provided in [88] were repeated.

However, each of the experiments was tuned down to around 15 minutes and load

five times higher than the mentioned experiment was provided which is mentioned

below.

• 15 seconds of load with 30 visits/min

• 2.5 minutes of ramping up to 3000 visits/min

• 4.5 minutes of fixed load to 3000 visits/min

• 9 minutes of ramping down to 60 visits/min

The situation was simulated using the Throughput Shaping Timer plugin of Apache

JMeter. The Gaussian Random Timer of JMeter was also used to provide short

delay within requests to represent real life behavior.

94

5.4 Metrics

For assessing reusability of the proposed approach, three metrics were used which

are Lines of Code (LOC), Message Passing Coupling (MPC) [2] and Lack of Co-

hesion of Methods 4 (LCOM4) [3]. LOC was used in the Rainbow framework

by Cheng et al. [88] for assessing reusability. However, LOC, as a measure of

reusability has been criticised in some of the literature [89, 4] because LOC does

not represent the connections between and within the classes or modules. This

is why coupling and cohesion based metrics were used. It has been seen that

reusability depends on coupling and cohesion of classes [90] as low coupling and

high cohesion increases the chance of reuse [90]. For this reason, MPC and LCOM4

were used to measure the reusability of the approach. The definition of these met-

rics are given below.

• LOC: LOC counts the number of lines in a code. However, a number of issues

such as, whether comments, blank lines etc. will be considered, becomes a

concern. David Wheeler developed a code analysis tool named SLOCCount

[91], which was also used by Rainbow for counting LOC. In this tool, an

LOC is considered as a line terminated with a newline and which contains

at least one character excluding whitespaces and comments. To validate

the proposed methodology, SLOCCount was utilized to calculate LOC. The

lower the LOC, the higher the probability of reuse.

• MPC: According to [89], MPC is a valid measure of coupling and so, a

valid measure of reusability [89]. MPC indicates the number of external

invocation of methods from a class. For example, if a class calls 5 methods

of some other classes, the value of MPC for this class is 5. MPC was used

to measure the coupling between the classes of the adaptation logic, after it

was integrated with Znn.com. The higher the MPC, the higher the class is

dependent on other classes and so, the lower the reusability.

95

• LCOM4: LCOM4 is a measure of cohesion. Cohesion indicates the strength

of internal relationships of functionalities within a class. LCOM4 is the

number of ‘connected components’ within a class [92]. A connected compo-

nent consists of a group of methods which either call one another or share

at least one instance variable of the class. Presence of multiple connected

components for a class means the class performs multiple unrelated responsi-

bilities. This is why cohesion and reusability increases as LCOM4 decrease.

The ideal values of LCOM4 are either 0 or 1 [92].

To assess the effectiveness of adaptation of the methodology, the experiment men-

tioned in Section 5.3 was performed five times starting from a single server and

high fidelity feature selection. This is because this feature selection results in the

worst performance. Every time one of the five servers is chosen and the load is

increased by any constant factor. In the experiments conducted, the load was

increased by 120 visits/min and it was seen that he system reaches its maximum

capacity after five runs. This is why the experiment was performed five times

to test for adaptation quality. In each of the runs, it was observed whether the

proposed methodology could gradually improve performance. Same as the adap-

tation logic design validation experiments from the literature [4, 12, 11], the value

of the main objective, response time in this case, was compared in two situations,

namely adaptation and without adaptation.

5.5 Result Analysis

The proposed methodology was applied to generate code for Znn.com, as men-

tioned previously. The generated code was analyzed based on the metrics men-

tioned in the previous section. As Rainbow used LOC as a measure of reusability

for the same case study on Znn.com, the LOC of the proposed model is compared

to that of Rainbow. The MPC and LCOM4 values are compared with ideal values

96

Table 5.1: Proposed Method vs. Rainbow Considering LOC

Approach LOC Aggregated LOC
Monitor Analyze Plan Execute KBC Training Subcomponent Full

Code
Proposed
Method

188 25 555 528 531 209 2036 4367

Rainbow 3694 638 1098 3694 - - 9124 24891

Monitor Analyze Plan Execute KBC Training
Components

LO
C

0
10

0
20

0
30

0
40

0
50

0

(a) LOC of Sub-Components

Monitor Analyze Plan Execute

LO
C

0
50

0
10

00
20

00
30

00

Proposed Method

Rainbow

(b) Sub-Component LOC for Rainbow vs.
Proposed Method

Total Subcomponent LOC Total LOC

LO
C

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Proposed Method

Rainbow

(c) Total Sub-Component and Full Code LOC

Figure 5.3: Results for LOC of The Proposed Technique

of these metrics as mentioned in the literature.

Table 5.1 and Figure 5.3 shows the LOC comparison between proposed tech-

nique and Rainbow. It is visible from the table that in all cases LOC is smaller

in the proposed approach. For Monitor, Analyze, Plan, Execute, Knowledge Base

Constructor (KBC) and Training, the proposed approach implementation contains

188, 25, 555, 528, 531 and 209 lines of codes respectively (Table 5.1 and Figure

97

Table 5.2: Descriptive Statistics for LCOM4 and MPC of The Proposed Method

Metric MinimumV alue MaximumV alue µ σ

LCOM4 0 3 0.8923 0.75256
MPC 0 17 3.046 4.40678

0 1 2 3
LCOM4 Values

N
um

be
r

of
 C

la
ss

es
0

10
20

30
40

50

86.15 %

13.85 %

(a) LCOM Values of The Components

0 1 2 3 4 5 6 8 10 11 12 13 14 17
MPC Values

N
um

be
r

of
 C

la
ss

es
0

10
20

30
40

50

(b) MPC Values of The Components

Figure 5.4: Results for LCOM4 and MPC of The Proposed Technique

5.3a). For the same components, Rainbow contains 3694, 638, 1098, 3694 and

9124 lines of codes respectively. The improvement can be understood more clearly

from Figure 5.3b. In case of Monitor and Analyze, the large difference is due to

the use of utility functions to detect and analyze goal violations. While Rainbow

uses complex model analysis for this purpose, the use of utility functions in the

proposed approach simply compares the monitored values with the threshold for

this. This is why it takes very few lines of code to implement this in the proposed

method. For Plan and Execute, LOC is smaller because the adaptation logic is

mathematical in nature rather than analytical like Rainbow where strategies need

to be parsed and analyzed before execution. In total, the proposed technique has

2036 LOC in terms of all subcomponents while Rainbow has 9124 LOC (Figure

5.3c). Considering the full code base, the proposed method has 4367 LOC and

Rainbow contains 24891 LOC (Figure 5.3c). The results prove that, in all cases,

the proposed method has lower amount of LOC than Rainbow. So, the proposed

method is more reusable than Rainbow from LOC measure.

98

Table 5.2 shows some descriptive statistics for LCOM4 and MPC of the pro-

posed method which are minimum value, maximum value, mean and standard

deviation. For LCOM4, the highest value is 3 and the lowest value is 0. The mean

and standard deviation of this metric is 0.8923 and 0.75256 which indicates that

LCOM4 values are close to the ideal values (0 and 1). The mean and standard

deviation for MPC is 3.046 and 4.40678 which shows that, MPC values are low on

average. This indicates low coupling between classes.

These results are more clearly visible from Figure 5.4. From Figure 5.4a, it is

seen that 86.15% classes have LCOM4 values of either 0 or 1, where 13.85% classes

have values different from these. This indicates that 86.15% classes achieved

maximum cohesion. Figure 5.4 shows the number of classes for each of the MPC

values. It is evident from the figure that most of the classes have low MPC values.

This shows that the proposed methodology results in loosely coupled classes. So,

according to the discussion in Section 5.4, low coupling and high cohesion show

the reusability of the proposed technique.

The five runs of the adaptation logic for Znn.com is depicted in Figure 5.5.

It is visible from all the five figures that adaptation improves the performance of

the system gradually. The threshold chosen for performance was 6.2 milliseconds

(ms). From Figure 5.5a, it is seen that response time gradually decreases after

approximately 10 requests and becomes higher after approximately 18 requests.

After this, the response time seems to become almost constant because of the

constant load scenario as mentioned in Section 5.3. It is clear that when adaptation

is applied, the response time gradually decreases under 6.2 ms and remains as such.

In case of the design without adaptation, response time seem to be more frequently

over the 6.2 ms from the figure.

A similar pattern is seen from Figure 5.5b, the adaptation mechanism reduces

the response time from the large spike after approximately 15 requests down to

almost 5 ms. The system performs worse overall without adaptation because the

99

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50 60

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

requests

Adaptation vs No Adaptation

With Adaptation
Without Adaptation

(a) Run 1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

requests

Adaptation vs No Adaptation

With Adaptation
Without Adaptation

(b) Run 2

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

requests

Adaptation vs No Adaptation

With Adaptation
Without Adaptation

(c) Run 3

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

requests

Adaptation vs No Adaptation

With Adaptation
Without Adaptation

(d) Run 4

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40 45

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

requests

Adaptation vs No Adaptation

With Adaptation
Without Adaptation

(e) Run 5

Figure 5.5: Comparison of Performance : Adaptation vs Without Adaptation in
Five Runs

response time is higher than the threshold from 12 to 38 requests approximately.

From Figure 5.5c, the response time line also decreases after 15 requests. The

response time becomes less than the threshold after approximately 15 requests

and remains unchanged upto approximately 35th request when a sudden violation

of response time goal is observed. However, it is evident that the response time

100

quickly drops back under the threshold and stays there throughout the run. From

the figure, it is clear that adaptation steadily improves the response time in this

scenario.

Figure 5.5d shows a similar pattern like Figure 5.5c. However, considering

the previously mentioned four figures, it is clear that adaptation quality is gradu-

ally improved because the average distance between the response time lines with

adaptation and without adaptation becomes distant. This happens due to the con-

tinuous update of knowledge base and training which ensures that the prediction

model is up-to-date throughout the time.

Figure 5.5e represents the highest load run of all the five runs. In this case, the

system becomes unstable and response time varies a lot. However, the adaptation

mechanism still shows better performance than the system without any adapta-

tion. In almost all cases, the mechanism without adaptation produces response

time above the threshold where the system with adaptation crosses the threshold

only five times, but runs down within threshold limit instantly.

From all the five figures mentioned previously, it is evident that the proposed

adaptation scheme performs better than a system without adaptation in all cases.

The LOC, MPC and LCOM4 values show that the proposed technique is able

to achieve reuse in both component and subcomponent levels. So, from all the

above discussion, it is observed that reuse is achieved while preserving effective

adaptation. The adaptation mechanism has also been incorporated with a tool

that generates the adaptation codes if inputs are given. So, it is expected that

this will solve the reusability related research problem addressed in the literature

[5, 60].

101

5.6 Summary

This chapter provides the result analysis for the proposed design mechanism for

self-adaptive system. The goal was to achieve reusability while preserving the

adaptation quality. In this chapter, a case study on a well-known system to the

adaptive system community called Znn.com has been discussed. It has been seen

that the proposed method has 4367 LOC in total where Rainbow, which used

Znn.com for the first time has 24891 LOC in total. In case of subcomponent level

LOC, the proposed technique has 2036 total subcomponent LOC while Rainbow

has 9124 LOC. In terms of LCOM4, the mean and standard deviation of the ap-

proach is 0.8923 and 0.75256 respectively where 86.15% classes have ideal LCOM4

values (0 or 1). The MPC values of this method have 3.046 and 4.40678 mean

and standard deviation respectively. From the analysis of the result, It is also

noticeable that most of the modules have low MPC values. Thus, the values of

these metrics show that reusability has been achieved. The adaptation technique

has been compared to the situation with no adaptation in a high load scenario

where it has achieved lower response times in all cases. On the whole, the pro-

posed method improves the reusability of the model while maintaining the quality

of adaptation.

102

Chapter 6

Conclusion

In this report, an adaptation mechanism assuring reusability and effectiveness has

been proposed. The core contribution of this work is the development of a self-

adaptive system design that not only enables reuse of the adaptation logic but

also the reuse of adaptation logic components and subcomponents. This chapter

summarizes the report and concludes by providing direction for future work.

6.1 Discussion

A reusable adaptation technique has been proposed in this report that can help

to provide ready-made adaptation logic components to developers of self-adaptive

systems. A tool has been developed to provide support for generating adaptation

logic codes for a specific business logic component. The proposed adaptation

component design has been tested on Znn.com, a well known model in the self-

adaptive system community. It has been seen that the proposed methodology

performs well in all cases.

The LOC measures for the proposed approach are 4367 and 2036 for whole

code and subcomponent level respectively. For Rainbow, the LOC measures are

24891 and 9124 respectively for the same cases. It has been mentioned previously

that LOC does not always represent the reusability of the code base and it has

103

been criticized in some literature [89, 4]. However, as the implementation for the

proposed method and Rainbow were in the same language (Java) and the proposed

technique outperforms Rainbow by a large amount of LOC, it can be concluded

that it has achieved more reusability than the Rainbow framework.

The LCOM4 and MPC values represent cohesion and coupling. From the result

analysis in Chapter 5, it has been seen that 86.15% classes have ideal LCOM4

values which is either 1 or 0. The MPC values have 3.046 and 4.40678 mean and

standard deviation respectively. These results indicate that coupling is low but

cohesion is high. This means that classes are mostly single minded and changing

one class has low effect on other classes. So, it clearly shows that the adaptation

design technique is reusable.

The 5 figures in Section 5.5 of Chapter 5 shows that adaptation mechanism

always performs better than having no adaptation. The improvement could have

occurred by chance if the experiments were not repeated. However, the experi-

ments were repeated five times to ensure that the improvement that the adaptation

technique shows is not merely by chance.

6.2 Threats to Validity

This section provides the threats that can hamper the accuracy and effectiveness

of the proposed model. In total, three threats to validity have been identified

which are given below.

1. The model assumes that accurate metric values can be achieved from the

system for detecting and planning for adaptation. Without accurate metric

values, the prediction model is inaccurate and so, the adaptation decision

may be inaccurate as well.

2. The threshold for the metric needs to be carefully chosen. In case of selecting

a threshold value that is unachievable, the adaptation logic cannot provide

104

an adaptation decision. It is mentionable that this is a common problem of

the most self-adaptive system design methods [16, 12, 60].

3. The adaptation mechanism implementation depends on some third party

libraries such as Weka, Commons IO etc. If any of these libraries contain

inaccuracies, the adaptation decision is also affected.

4. It is assumed that the features and feature dependencies of the system are

known, which is a valid assumption because development of a system occurs

after requirement gathering, analysis and design. However, if these are not

known for any reason, this adaptation design technique cannot be used.

6.3 Future Work

The proposed methodology provided a reusable adaptation component that can

perform effective adaptation. However, the implementation is now available in

only Java programming language. So, the tool also generates code in Java. In

future, the implementation will be also provided in C#, PHP etc. languages. A

more thorough case study will be performed on an industrial self-adaptive system

to test the scalability of the approach.

The model will address the threshold problem discussed in the previous section

in future. Currently, the model takes decision based on current situation only. In

future, the technique will be enhanced to take adaptation decision by foreseeing

future effects of the decision on the system.

105

Bibliography

[1] M. Luckey and G. Engels, “High-quality specification of self-adaptive software
systems,” in Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 143–152, IEEE
Press, 2013.

[2] L. C. Briand, J. W. Daly, and J. K. Wust, “A unified framework for coupling
measurement in object-oriented systems,” IEEE Transactions on software
Engineering, vol. 25, no. 1, pp. 91–121, 1999.

[3] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object-oriented
systems. Citeseer, 1995.

[4] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-adaptation
in the presence of multiple objectives,” in Proceedings of the 2006 interna-
tional workshop on Self-adaptation and self-managing systems, pp. 2–8, ACM,
2006.

[5] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive systems,
pp. 48–70, Springer, 2009.

[6] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and re-
search challenges,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 4, no. 2, p. 14, 2009.

[7] N. Abbas and J. Andersson, “Harnessing variability in product-lines of self-
adaptive software systems,” in Proceedings of the 19th International Confer-
ence on Software Product Line, pp. 191–200, ACM, 2015.

[8] R. Sterritt and D. W. Bustard, “Towards an autonomic computing environ-
ment,” 2003.

[9] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,” Com-
puter, vol. 37, no. 10, pp. 46–54, 2004.

[10] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos,
A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, et al.,

106

“Software engineering meets control theory,” in Proceedings of the 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 71–82, IEEE Press, 2015.

[11] D. Kim and S. Park, “Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software,” in Software
Engineering for Adaptive and Self-Managing Systems, 2009. SEAMS’09.
ICSE Workshop on, pp. 76–85, IEEE, 2009.

[12] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework for
engineering feature-oriented self-adaptive software systems,” Software Engi-
neering, IEEE Transactions on, vol. 39, no. 11, pp. 1467–1493, 2013.

[13] P.-C. David and T. Ledoux, “Towards a framework for self-adaptive
component-based applications,” in Distributed Applications and Interoperable
Systems, pp. 1–14, Springer, 2003.

[14] T. Coupaye, É. Bruneton, and J. Stefani, “The fractal composition frame-
work,” Specification, July, 2002.

[15] Y. Wu, Y. Wu, X. Peng, and W. Zhao, “Implementing self-adaptive software
architecture by reflective component model and dynamic aop: A case study,”
in Quality Software (QSIC), 2010 10th International Conference on, pp. 288–
293, IEEE, 2010.

[16] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: a framework for engineer-
ing self-tuning self-adaptive software systems,” in Proceedings of the eigh-
teenth ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 7–16, ACM, 2010.

[17] B. S. Shang-Wen Cheng, “Model Problem: Znn.com.” https:

//www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

model-problem-znn-com/.

[18] R. Laddaga and P. Robertson, “Self adaptive software: A position paper,”
in SELF-STAR: International Workshop on Self-* Properties in Complex In-
formation Systems, vol. 31, p. 19, Citeseer, 2004.

[19] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M.
Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle, Software Engi-
neering for Self-Adaptive Systems: A Research Roadmap, pp. 1–26. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.

[20] A. K. Dey, “Understanding and using context,” Personal and ubiquitous com-
puting, vol. 5, no. 1, pp. 4–7, 2001.

107

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/

[21] A. Computing et al., “An architectural blueprint for autonomic computing,”
IBM White Paper, 2006.

[22] M. Salehie and L. Tahvildari, “Autonomic computing: emerging trends and
open problems,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 1–7, ACM, 2005.

[23] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A survey
on engineering approaches for self-adaptive systems,” Pervasive and Mobile
Computing, vol. 17, pp. 184–206, 2015.

[24] F. D. Maćıas-Escrivá, R. Haber, R. del Toro, and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges and
applications,” Expert Systems with Applications, vol. 40, no. 18, pp. 7267–
7279, 2013.

[25] R. S. Group, “ROBOCUPRESCUE.” http://www.robocuprescue.org/.

[26] “DEMANES.” http://www.demanes.eu/project_description.

[27] M. Hüfner, S. Fischer, C. Sonntag, and S. Engell, “Integrated model-based
support for the design of complex controlled systems,” in Symposium on Pro-
cess Systems Engineering, vol. 15, p. 19, 2012.

[28] S. Scholze, J. Barata, and O. Kotte, “Context awareness for self-adaptive and
highly available production systems,” in Doctoral Conference on Computing,
Electrical and Industrial Systems, pp. 210–217, Springer, 2013.

[29] E. Sarriot and M. Kouletio, “Community health systems as complex adaptive
systems: Ontology and praxis lessons from an urban health experience with
demonstrated sustainability,” Systemic Practice and Action Research, vol. 28,
no. 3, pp. 255–272, 2015.

[30] V. Denneberg and P. Fromm, “Oscar. an open software concept for au-
tonomous robots,” in Industrial Electronics Society, 1998. IECON’98. Pro-
ceedings of the 24th Annual Conference of the IEEE, vol. 2, pp. 1192–1197,
IEEE, 1998.

[31] J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi,
and T. Vogel, “Software engineering processes for self-adaptive systems,” in
Software Engineering for Self-Adaptive Systems II, pp. 51–75, Springer, 2013.

[32] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control in adaptive sys-
tems,” in Proceedings of the 2nd international workshop on Ultra-large-scale
software-intensive systems, pp. 23–26, ACM, 2008.

[33] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven,
“Using architecture models for runtime adaptability,” IEEE software, vol. 23,
no. 2, pp. 62–70, 2006.

108

http://www.robocuprescue.org/
http://www.demanes.eu/project_description

[34] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[35] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg, “Models@
run.time to support dynamic adaptation,” Computer, vol. 42, no. 10, pp. 44–
51, 2009.

[36] A. J. Ramirez and B. H. Cheng, “Design patterns for developing dynamically
adaptive systems,” in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pp. 49–58, ACM, 2010.

[37] M. L. Berkane, L. Seinturier, and M. Boufaida, “Using variability mod-
elling and design patterns for self-adaptive system engineering: application
to smart-home,” International Journal of Web Engineering and Technology,
vol. 10, no. 1, pp. 65–93, 2015.

[38] M. Shaw and D. Garlan, Software architecture: perspectives on an emerging
discipline, vol. 1. Prentice Hall Englewood Cliffs, 1996.

[39] R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave
Macmillan, 2005.

[40] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. N. Taylor,
“xadl: enabling architecture-centric tool integration with xml,” in System
Sciences, 2001. Proceedings of the 34th Annual Hawaii International Confer-
ence on, pp. 9–pp, IEEE, 2001.

[41] J. Dowling and V. Cahill, “The k-component architecture meta-model for self-
adaptive software,” in International Conference on Metalevel Architectures
and Reflection, pp. 81–88, Springer, 2001.

[42] J. Kramer and J. Magee, “Self-managed systems: an architectural challenge,”
in Future of Software Engineering, 2007. FOSE’07, pp. 259–268, IEEE, 2007.

[43] “GME.” http://www.isis.vanderbilt.edu/projects/gme/, 2008.

[44] “XTEAM.” http://softarch.usc.edu/~gedwards/xteam.html, 2007.

[45] “Prism-MW.” http://sunset.usc.edu/~softarch/Prism/, 2005.

[46] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, pp. 25–31, Feb. 2006.

[47] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[48] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plášil, G. Pomberger, W. Pree,
M. Stal, and C. Szyperski, “What characterizes a (software) component?,”
Software-Concepts & Tools, vol. 19, no. 1, pp. 49–56, 1998.

109

http://www.isis.vanderbilt.edu/projects/gme/
http://softarch.usc.edu/~gedwards/xteam.html
http://sunset.usc.edu/~softarch/Prism/

[49] M. R. Chaudron, C. Szyperski, and R. H. Reussner, Component-based Soft-
ware Engineering: 11th International Symposium, CBSE 2008, Karlsruhe,
Germany, October 14-17, 2008, Proceedings, vol. 5282. Springer, 2008.

[50] J. S. E. Bruneton, T. Coupaye, The Fractal Component Model. The Ob-
jectWeb Consortium, Feb. 2004.

[51] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control of
computing systems. John Wiley & Sons, 2004.

[52] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to sta-
tistical learning, vol. 6. Springer, 2013.

[53] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1.
MIT press Cambridge, 1998.

[54] H. N. Ho and E. Lee, “Model-based reinforcement learning approach for plan-
ning in self-adaptive software system,” in Proceedings of the 9th Interna-
tional Conference on Ubiquitous Information Management and Communica-
tion, p. 103, ACM, 2015.

[55] C. M. U. Software Engineering Institure, “Software Product Lines.”

[56] E. Gamma, Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[57] R. Laddad, “I want my aop!, part 2,” Retrieved May, vol. 11, p. 2004, 2002.

[58] P.-C. David and T. Ledoux, “An aspect-oriented approach for developing
self-adaptive fractal components,” in International Conference on Software
Composition, pp. 82–97, Springer, 2006.

[59] M. Litoiu, M. Woodside, and T. Zheng, “Hierarchical model-based autonomic
control of software systems,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, pp. 1–7, ACM, 2005.

[60] N. Gui and V. De Florio, “Towards meta-adaptation support with
reusable and composable adaptation components,” in Self-Adaptive and Self-
Organizing Systems (SASO), 2012 IEEE Sixth International Conference on,
pp. 49–58, IEEE, 2012.

[61] S.-W. Cheng, V. V. Poladian, D. Garlan, and B. Schmerl, “Improving
architecture-based self-adaptation through resource prediction,” in Software
Engineering for Self-Adaptive Systems, pp. 71–88, Springer, 2009.

[62] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Adaptation impact and
environment models for architecture-based self-adaptive systems,” Science of
Computer Programming, 2016.

110

[63] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-based self-
adaptation,” Journal of Systems and Software, vol. 85, no. 12, pp. 2860–2875,
2012.

[64] J. Floch, C. Frà, R. Fricke, K. Geihs, M. Wagner, J. Lorenzo, E. So-
ladana, S. Mehlhase, N. Paspallis, H. Rahnama, et al., “Playing musicbuilding
context-aware and self-adaptive mobile applications,” Software: Practice and
Experience, vol. 43, no. 3, pp. 359–388, 2013.

[65] J. M. D. F. E. C. Rogue Wave, Patrick Thompson, “The CORBA Component
Model (CCM),” Aug. 1999.

[66] “Introduction: Simulink Control.” http://ctms.engin.umich.edu/CTMS/

index.php?example=Introduction§ion=SimulinkControl.

[67] “Robocode.” http://robocode.sourceforge.net/, Dec. 2015.

[68] J. R. Quinlan et al., “Learning with continuous classes,” in 5th Australian
joint conference on artificial intelligence, vol. 92, pp. 343–348, Singapore,
1992.

[69] U. V. Sanjoy Dasgupta, Christos Papadimitriou, Algorithms. McGraw-Hill
Science/Engineering/Math, 1 ed., 2006.

[70] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. Le Traon,
O. Barais, and J.-M. Jézéquel, “Towards flexible evolution of dynamically
adaptive systems,” in Proceedings of the 34th International Conference on
Software Engineering, pp. 1353–1356, IEEE Press, 2012.

[71] “Cas software.” http://www.cas.de/en/homepage.html, Dec. 2015.

[72] “Fusion.” http://www.ics.uci.edu/~seal/projects/fusion/index.

html, June 2016.

[73] “Diva integrated studio.” https://sites.google.com/site/divawebsite/

divastudio/diva-integrated-studio.

[74] “Apache jmeter.” http://jmeter.apache.org/.

[75] C. Kästner, S. Apel, M. Rosenmüller, D. Batory, G. Saake, et al., “On the
impact of the optional feature problem: analysis and case studies,” in Proceed-
ings of the 13th International Software Product Line Conference, pp. 181–190,
Carnegie Mellon University, 2009.

[76] “Eclipse MARS.” https://eclipse.org/mars/.

[77] “Weka.” http://www.cs.waikato.ac.nz/ml/weka/.

[78] uklimaschewski, “EvalEx.” https://github.com/uklimaschewski/EvalEx.

[79] “Commons IO.” http://commons.apache.org/proper/commons-io/.

111

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SimulinkControl
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SimulinkControl
http://robocode.sourceforge.net/
http://www.cas.de/en/homepage.html
http://www.ics.uci.edu/~seal/projects/fusion/index.html
http://www.ics.uci.edu/~seal/projects/fusion/index.html
https://sites.google.com/site/divawebsite/divastudio/diva-integrated-studio
https://sites.google.com/site/divawebsite/divastudio/diva-integrated-studio
http://jmeter.apache.org/
https://eclipse.org/mars/
http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/uklimaschewski/EvalEx
http://commons.apache.org/proper/commons-io/

[80] “JUnit 4.12.0.” https://github.com/junit-team/junit4.

[81] “mockito.” http://site.mockito.org/.

[82] J. Cámara and R. de Lemos, “Evaluation of resilience in self-adaptive systems
using probabilistic model-checking,” in Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pp. 53–62, IEEE Press, 2012.

[83] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, “On patterns for
decentralized control in self-adaptive systems,” in Software Engineering for
Self-Adaptive Systems II, pp. 76–107, Springer, 2013.

[84] M. Luckey, B. Nagel, C. Gerth, and G. Engels, “Adapt cases: extending
use cases for adaptive systems,” in Proceedings of the 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems,
pp. 30–39, ACM, 2011.

[85] “slashdot.org.” https://slashdot.org/.

[86] “Bash Reference Manual.” https://tiswww.case.edu/php/chet/bash/

bashref.html.

[87] J. Sztrik, “Basic queueing theory,” University of Debrecen, Faculty of Infor-
matics, vol. 193, 2012.

[88] S.-W. Cheng, Rainbow: cost-effective software architecture-based self-
adaptation. ProQuest, 2008.

[89] N. Fenton and J. Bieman, Software metrics: a rigorous and practical ap-
proach. CRC Press, 2014.

[90] G. Gui and P. D. Scott, “Measuring software component reusability by cou-
pling and cohesion metrics,” Journal of computers, vol. 4, no. 9, pp. 797–805,
2009.

[91] D. A. Wheeler, “SLOCCount.” http://www.dwheeler.com/sloccount/

sloccount.html.

[92] “Cohesion metrics.” http://www.aivosto.com/project/help/

pm-oo-cohesion.html.

112

https://github.com/junit-team/junit4
http://site.mockito.org/
https://slashdot.org/
https://tiswww.case.edu/php/chet/bash/bashref.html
https://tiswww.case.edu/php/chet/bash/bashref.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.aivosto.com/project/help/pm-oo-cohesion.html
http://www.aivosto.com/project/help/pm-oo-cohesion.html

	Approval
	Dedication
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Questions
	Contribution and Achievement
	Organization of the Report

	Background Study
	Self-Adaptive System
	Applications of Self-Adaptive Systems
	Sensor Networks
	Intelligent Infrastructure Systems
	Manufacturing Process
	Social Service-Based systems
	Transportation
	Software Industries

	Self-Adaptive System Life Cycle Model
	Self-Adaptive System Design
	MAPE-K Architecture
	Software Architecture
	Software Component Model
	Feedback Control
	Machine Learning
	Software Product Line and Variability
	Design Patterns

	Summary

	Literature Review of Self-Adaptive System Design
	Architecture-Based Approaches
	Rainbow
	MADAM
	Transformer
	Summary of Architecture-Based Approaches

	Component Model-Based Approaches
	The K-Component Framework
	Fractal-Based Framework
	Fractal and Dynamic AOP-Based Approach
	Summary of Component Model-Based Approaches

	Control-Theory Based Approaches
	Hierarchical Model-Based Autonomic Control
	Feedback Control for MRAS
	Control Design Process
	Summary of Control Theory-based Approaches

	Machine Learning-Based Approaches
	Q-learning Based Method
	Model-Based Reinforcement Learning Technique
	FUSION Framework
	Summary of Machine Learning-Based Approaches

	Software Product Line-Based Approaches
	Dynamic Software Product Line-Based Approach
	MODELS@RUN.TIME
	ASPLe Framework
	Summary of Software Product Line-based approaches

	Design Pattern-Based Approaches
	Design Pattern Catalogue for Self-Adaptive Systems
	Variability Modeling and Design Patterns for Self-adaptive Systems
	Summary of Design Pattern-Based Approaches

	Summary

	A Reusable Adaptation Component Design Technique for Self-Adaptive System
	Introduction
	Reusable Adaptation Component for Self-Adaptive Systems
	Logical View of The Model
	Structural View of The Model

	Summary

	Implementation and Result Analysis
	Implementation Details
	Case Study: Znn.com
	Experimental Setup
	Metrics
	Result Analysis
	Summary

	Conclusion
	Discussion
	Threats to Validity
	Future Work

	Bibliography

