
i

Clone Type Based Comparison among Code

Clone Detection Tools and Techniques

Tarek Salah Uddin Mahmud

Bachelor of Science in Software Engineering

Institute of Information Technology, University of Dhaka

Class Roll: BSSE 0508

Registration Number: 2012-912-067

Session: 2012-13

A submitted in partial fulfillment for the degree of

Bachelor of Science in Software Engineering

in the

Institute of Information Technology

University of Dhaka

DHAKA, BANGLADESH

November 2016

ii

iii

ABSTRACT

Over the last decade many techniques for code clone detection have been proposed. To

understand the characteristics of different tools and techniques and where to use those

perfectly, comparison between those are needed. There have been a number of comparison and

evaluation studies to relate those which provided significant contributions to the clone detection

research. These also exposed how challenging it is to compare different tools for some reasons.

They are the diverse nature of the detection techniques, the lack of standard similarity definitions

and the absence of benchmarks. There is no comparison that helps to understand which tool or

technique works better in different types of code clones. In this research project, a

comprehensive analysis is provided on the performances of currently available clone detection

tools and techniques.

iv

ACKNOWLEDGEMENT

I would like to express my heartiest gratitude to Dr. Kazi Muheymin-Us-Sakib for his support

and timely guidance during the thesis compilation. He has been meticulous and fastidious to

bring the best out of me throughout the thesis.

v

TABLE OF CONTENTS

Abstract .. iii

Acknowledgement ... iv

List of tables .. vii

List of figures: ... viii

1 Introduction .. 1

1.1 Overview ... 1

1.2 Comparison among code clone detection tools and techniques ... 2

1.3 Research questions ... 2

1.4 Contribution of the research project .. 3

1.5 Organization of the research project .. 4

2 Background studies ... 5

2.1 Code Clone .. 5

2.1.1 Code fragment .. 5

2.1.2 How duplicate codes are created ... 6

2.1.3 Problems associated with duplicated codes ... 6

2.1.4 Clone types .. 7

2.2 Code Clone Detection ... 8

2.2.1 Code analysis ... 8

2.2.2 Application of code clone detection ... 9

2.2.3 Clone detection process .. 9

3 Related work ... 14

3.1 Textual Approaches .. 16

3.2 Lexical Approaches .. 18

3.3 Tree-matching Approaches ... 19

3.4 Comparison Studies Among Code Clone Detection Tools and Techniques 20

3.5 summary ... 22

4 Methodology ... 23

4.1 Overview of the implemented tool ... 23

4.2 Description of the implemented tool ... 25

4.2.1 Johnson ... 25

4.2.2 CCFinder .. 26

vi

4.2.3 CloneDigger ... 27

Sequence Detection Algorithm ... 28

4.3 Summary ... 29

5 Implementation and result analysis .. 30

5.1 Environmental Setup .. 30

5.2 Comparative analysis .. 32

5.2.1 Type 1 (Change in formatting) .. 33

5.2.2 Type 2 (change in identifiers) .. 35

5.2.3 Type 3 (add or delete lines) .. 37

5.2.4 Type 4 (reorder data dependent and control statements) ... 39

5.3 Summary ... 42

6 Conclusion ... 43

6.1 Discussion .. 43

6.2 Future Work .. 44

7 References .. 45

vii

LIST OF TABLES

Table 3.1: Taxonomy of Clone Detection Techniques and Tools……….……………………………….……15

Table 5.1: Evaluation of the tools on clone type-1……………………………….…………………………………33

Table 5.2: Evaluation of the tools on clone type-2………………………………….………………………….…..35

Table 5.3: Evaluation of the tools on clone type-3…………………………………….……………………….…..37

Table 5.4: Evaluation of the tools on clone type-4……………………………………….…………………….…..39

Table 5.5: Coverage on the scenarios……………………………………………………………….…………………….41

viii

LIST OF FIGURES:

Figure 2.1: Two code fragments which are clones…………….………..…………………………………………….5

Figure 2.2: Clone types………………………………………………………….………………………………………………….7

Figure 2.3: A Generic Clone Detection Process……………...………….…………………………………………….12

Figure 4.1: Overview of the implemented tool……………………………….……………………………….………24

Figure 5.1: Clone type-1 scenarios…………………………………………………….……………………………..……..34

Figure 5.2: Clone type-2 scenarios……………………………………………………….………………………………….36

Figure 5.3: Clone type-3 scenarios………………………………………………………….……………………………….38

Figure 5.4: Clone type-4 scenarios…………………………………………………………….…………………………….40

Figure 5.5: Coverage of the techniques………………………………………………………….………………………..42

1

1 INTRODUCTION

Code clone detection refers the automated process of finding similarities among code sections.

Cloning unnecessarily increases program size. Since many maintenance efforts correlate with

program size, this increases the maintenance effort. It requires the developers to find and update

several fragments while changing any module. Clone detection techniques first analyze the

source code, represent the code in their proposed ways such as text, tokens, Abstract syntax tree

etc. and then perform matching algorithms to detect the clones. Various techniques and tools

have been proposed for detecting clones. Each of these techniques have their own merits, but

are not useful in all the scenarios where a code can be cloned.

1.1 OVERVIEW

Several techniques for detecting code clones have been proposed in literature. To understand

the characteristics of different tools and techniques and where to use those perfectly,

comparison between those are needed. There have been a number of comparison and evaluation

studies to relate those which provided significant contributions to the clone detection research.

These also exposed how challenging it is to compare different tools for some reasons. They are

the diverse nature of the detection techniques, the lack of standard similarity definitions and the

absence of benchmarks.

Each study has chosen a number of tools and compared them using precision, recall,

computational complexity and memory use. But it is very important to know which tool or

technique should be used in different types of clones. It will give the user an idea about which

one s/he should use in particular scenario. Unfortunately, there is no comparison that helps to

understand which tool or technique works better in different types of code clones. There is also

no evaluation of the most recent tools, such as iClones and clone detection feature of visual

studio.

2

1.2 COMPARISON AMONG CODE CLONE DETECTION TOOLS AND TECHNIQUES

To detect duplicated code, numerous techniques have been successfully applied on industrial

systems. These techniques can be roughly classified into three categories. (i) text based, the

program is divided into a number of strings (typically lines) and these strings are compared

against each other to find sequences of duplicated strings; (ii) token based, a laxer tool divides

the program into a stream of tokens and then searches for series of similar tokens; (iii) tree based,

after building a complete parse tree one performs pattern matching on the tree to search for

similar sub–trees. Several tools have been proposed based on these techniques. Some of those

are SDD (Data structure of an inverted index and an index with n neighbor distance concept) [1]

(text based), CPD (Karp Rabin string matching algorithm with frequency table of tokens) [2],

iClones (adapted to detect clones over multiple versions at a time) [3] (token based), CloneDigger

(XML representation of ASTs and anti-unification/code abstraction) [5], CloneDr (Hashing of

syntax trees and tree comparison) [4] (tree based) and clone detection feature in visual studio

enterprise. One of the first comparative experiments was conducted by Bailey and Burd [6], who

compared three state of the art clone detection and two plagiarism detection tools. Although

they were able to verify all the clone candidates, the limitations of the case study in terms of a

single subject system, modest system size and validation subjectivity may make their findings less

than definitive. Considering the limitations of Burd and Bailey’s study, Bellon et al. set out to

conduct a larger tool comparison experiment [7] on the same three clone detection tools used in

Burd and Bailey’s study and three additional clone detection tools. They also used a more diverse

set of larger software systems, consisting of four Java and four C systems. While their study is the

most extensive to date, only a small proportion of the clone detection tools were evaluated.

Bellon’s framework has been reused in experiments by Koschke et al. [8] and Ducasse et al. [9].

To date, no one works with the different types of code clones.

1.3 RESEARCH QUESTIONS

As found from the previous discussion, to use a tool or technique, it is important to know the

nature or those. The general lack of evaluation is worsen by the fact that there are no agreed

upon evaluation criteria or representative benchmarks. Finding such universal criteria is difficult,

3

since techniques are often designed for different purposes and each has its own tunable

parameters. The following research question requires our attention here:

RQ: What tool or technique should one use when the scenario of the clone is known?

To address this question the following sub questions must be answered.

¶ What kind of matches are found?

Depending on the maintenance task at hand, someone may be looking for specific kinds of

duplication. For instance, during a problem assessment phase, maintainers want to obtain an

overall report of the amount of duplication existing in all program files. On the other hand,

during a restructuring phase, maintainers are interested in a duplication tool that detects only

the programming constructs that one can restructure using a particular tool. Therefore a

refactoring tool, moving methods in the class hierarchy, is interested only in duplicated

method bodies.

¶ How does it perform?

When using a detection technique one wishes it will detect all types of code clones. Therefore

you need to establish the performance of each technique for different types of clones.

1.4 CONTRIBUTION OF THE RESEARCH PROJECT

Duplicate code is a major problem in software development. It requires the developers to find

and update several fragments while changing any module. There are many tools and techniques

for detecting code clones. But there is no comparative study that helps a user to know which tool

works better in different types of clones. The results of this study may assist new potential users

of clone detection techniques in understanding the range of available techniques and tools and

selecting those most appropriate for their needs. It may also assist in identifying remaining open

research questions, avenues for future research, and interesting combinations of techniques.

4

1.5 ORGANIZATION OF THE RESEARCH PROJECT

This section gives an overview of the remaining chapters of this research project. The chapters

are organized as follows

¶ Chapter 2: Background Study, In this chapter, background knowledges needed to study

on code clone is presented.

¶ Chapter 3: Literature Review, In this chapter, a brief about researches targeting code

clone detection, and its impact, evolution and comparison among techniques is

presented.

• Chapter 4: Methodology, Brief description about the implementation of three techniques

in a tool is described in this chapter.

• Chapter 5: Result Analysis, This chapter discusses the results of the experiment and

explains the performances of the tools and techniques.

• Chapter 6: Conclusion In this concluding chapter, a brief of the whole work is summarized

and future directions are described.

5

2 BACKGROUND STUDIES

2.1 CODE CLONE

Code clone is a computer programming term for a sequence of source code that occurs more

than once. It can be located either within a program or across different programs owned or

maintained by the same entity. Cloning unnecessarily increases program size. It requires the

developers to find and update several fragments while changing any module. This section

contains the related topics which should be known before introducing code clone.

2.1.1 Code fragment

A Code Fragment (CF) is any sequence of code lines (with or without comments). Clone is

detected using comparison between the fragments in a source code. It can be of any types of

code, for example function definition, begin-end block, or sequence of statements. A CF is

identified by its file name and begin-end line numbers in the original code base.

Let CF1 and CF2 are two code fragments. CF2 is a clone of CF1 if they are similar by some given

definition of similarity, that is, f(CF1) = f(CF2) where f is the similarity function. A similarity

function can be defined in various ways such as, exact match between fragments, match

fragments after removing the comments or normalizing identifiers. Two fragments that are

similar to each other form a clone pair (CF1, CF2), and when many fragments are similar, those

form a clone class or clone group. Fig 2.1 shows two code fragments which are clones by nature.

Figure 2.1: Two code fragments which are clones.

6

2.1.2 How duplicate codes are created

There are a number of reasons why duplicate codes may be created, including:

¶ When multiple programmers are working on different parts of the same program at the

same time. Since they are working on different tasks, they may be unaware their

colleague has already written similar code that could be repurposed for their own needs.

¶ Copy paste programming, in which a section of code is copied because it is workable. In

most cases this operation involves slight modifications in the cloned code such as

renaming variables or inserting/deleting codes. A copy is created due to the programmer

does not truly knowing the language or not having the time to do it properly. For example,

a programmer has to write a sort function where he has no idea how to write it in java.

He will search this in the code base or through internet. And put it in the program. Thus

a clone has been made.

¶ Functionality that is very similar to that in another part of a program is required and a

developer independently writes code that is very similar to what exists elsewhere. That

such independently rewritten code is typically not exactly similar.

¶ Generated code, where having duplicate codes may be desired to increase speed or ease

of development. For example, to design a desktop application in java everyone uses the

auto generated code generated by the IDE.

2.1.3 Problems associated with duplicated codes

Duplicated clones introduces many problems in software development and management.

Inappropriate code duplication generally makes editing more difficult due to unnecessary

increases in complexity and length. This may lead to,

¶ Increased maintenance costs,

¶ More human errors,

¶ Forgotten or overlooked pieces of code,

¶ Greater file size,

¶ Indicative of a sloppy design.

7

2.1.4 Clone types

Code can be cloned in several ways. There are four main kinds of similarity between code

fragments. Fragments can be similar based on the similarity of their program text, or they can be

similar based on their functionality (independent of their text). The first kind of clone is often the

result of copying a code fragment and pasting into another location. In the following the types of

clones are provided based on both the textual (Types 1 to 3) [1] and functional (Type 4) [2]

similarities:

¶ Type-1: Identical code fragments except for variations in whitespace, layout and

comments. Fig 2.2(b) shows this type of code clone.

¶ Type-2: Syntactically identical fragments except for variations in identifiers, literals, types,

whitespace, layout and comments. Fig 2.2(c) shows this type of code clone.

¶ Type-3: Copied fragments with further modifications such as changed, added or removed

statements, in addition to variations in identifiers, literals, types, whitespace, layout and

comments. Fig 2.2(d) shows this type of code clone.

¶ Type-4: Two or more code fragments that perform the same computation but are

implemented by different syntactic variants. Fig 2.2(e) shows this type of code clone.

(a)Original Code

8

(b) (c)

(d) (e)

Figure 2.2: Clone types.

2.2 CODE CLONE DETECTION

Code clone detection refers the automated process of finding similarities among code sections.

Cloning unnecessarily increases program size. Since many software maintenance efforts correlate

with program size, this increases the maintenance effort. It requires the developers to find and

update several fragments while changing any module.

2.2.1 Code analysis

Source code analysis is the automated testing of source code for the purpose of debugging a

computer program or application before it is distributed or sold. The source code is the most

permanent form of a program, even though the program may later be modified, improved or

upgraded. Source code analysis can be either static or dynamic.

¶ In static analysis, debugging is done by examining the code without actually executing the

program. This can reveal errors at an early stage in program development, often

eliminating the need for multiple revisions later.

¶ After static analysis has been done, dynamic analysis is performed in an effort to uncover

more subtle defects or vulnerabilities. Dynamic analysis consists of real-time program

testing.

Clone is detected through static analysis of a source code.

9

2.2.2 Application of code clone detection

Finding clones is typically useful in the following cases:

¶ When updating existing code. At the time of fixing a bug, or responding to changes in

requirements, one usually start by finding the location in the code that s/he need to

change. Before making the change, search for clones of that code segment. If clones are

discovered:

1. Consider whether it is needed to make the same change to each clone.

2. Consider also whether this is a good opportunity to refactor the cloned code into a

shared method or class.

¶ When merging multiple code bases. Suppose a retail banking software system

maintained by Tata Consultancy Services (TCS), that is in active use by a number

of banks (with different codebases). The company decided to form a common codebase

for all these banks. It will be very difficult and a huge business lose if they need duplicated

efforts in-

1. Delivering common features,

2. Maintain these common features separately.

Code clone detection is needed here to identify the duplicate features and making a

generalized feature that can support all these banks.

2.2.3 Clone detection process

A clone detector must try to find pieces of code of high similarity in a system’s source text. The

main problem is that it is not known which code fragments may be repeated. Thus the detector

really should compare every possible fragment with every other possible fragments. Such a

comparison is prohibitively expensive from a computational point of view and thus, several

measures are used to reduce the domain of comparison before performing the actual

comparisons. Even after identifying potentially cloned fragments, further analysis and tool

support may be required to identify the actual clones.

10

In this section, an overall summary of the basic steps in a clone detection process will be

provided. This generic overall picture allows us to compare and evaluate clone detection tools

with respect to their underlying mechanisms for the individual steps. It also allows to evaluate

their level of support for these steps.

¶ Preprocessing: At the beginning of any clone detection approach, the source code is

partitioned and the domain of the comparison is determined. There are three main

objectives in this phase:

o Remove uninteresting parts: Whole source code uninteresting to the comparison

phase. Those are filtered out in this phase. For example, partitioning is applied to

embedded code to separate different languages (for example, SQL embedded in

Java code, or Assembler in C code).

o Determine source units: After removing the uninteresting code, the remaining

source code is partitioned into a set of disjoint fragments called source units.

These units are the largest source fragments that may be involved in direct clone

relations with each other. Source units can be at any level of granularity, for

example, files, classes, functions/methods, begin-end blocks, statements, or

sequences of source lines.

o Determine comparison units: Source units may need to be further partitioned

into smaller units depending on the comparison technique used by the tool. For

example, source units may be subdivided into lines or even tokens for comparison.

Comparison units can also be derived from the syntactic structure of the source

unit.

¶ Transformation: Once the units of comparison are determined, if the comparison

technique is other than textual, the source code of the comparison units is transformed

to an appropriate intermediate representation for comparison.

o Extraction: Extraction transforms source code to the form suitable as input to the

actual comparison algorithm. Depending on the tool, it typically involves one or

more of the following steps.

11

Á Tokenization: In case of token-based approaches, each line of the source

is divided into tokens according to the lexical rules of the programming

language of interest. The tokens of lines or files then form the token

sequences to be compared. All whitespace (including line breaks and tabs)

and comments between tokens are removed from the token sequences.

CCFinder [4] and Dup [3] are the leading tools that use this kind of

tokenization on the source code.

Á Parsing: In case of syntactic approaches, the entire source code base is

parsed to build a parse tree or (possibly annotated) Abstract Syntax Tree

(AST). The source units to be compared are then represented as subtrees

of the parse tree or the AST, and comparison algorithms look for similar

subtrees to mark as clones [5, 6, 7]. Metrics-based approaches may also

use a parse tree representation to find clones based on metrics for

subtrees [8, 9].

Á Control and Data Flow Analysis: Semantics-aware approaches generate

Program Dependence Graphs (PDGs) from the source code. The nodes of

a PDG represent the statements and conditions of a program, while edges

represent control and data dependencies. Source units to be compared are

represented as subgraphs of these PDGs. The techniques then look for

isomorphic subgraphs to find clones [10, 11]. Some metrics-based

approaches use PDG subgraphs to calculate data and control flow metrics

[8, 9].

o Normalization: Normalization is an optional step intended to eliminate superficial

differences such as differences in whitespace, commenting, formatting or

identifier names.

Á Removal of whitespace: Almost all approaches disregard whitespace,

although line-based approaches retain line breaks.

Á Removal of comments: Most approaches remove and ignore comments in

the actual comparison.

12

Figure 2.3: A Generic Clone Detection Process

¶ Normalizing identifiers: Most approaches apply an identifier normalization before

comparison in order to identify parametric Type-2 clones. In general, all identifiers in the

source code are replaced by the same single identifier in such normalizations.

¶ Pretty-printing of source code: Pretty printing is a simple way of reorganizing the source

code to a standard form that removes differences in layout and spacing. Pretty printing is

normally used in text-based clone detection approaches to find clones that differ only in

spacing and layout.

13

¶ Match Detection: The transformed code is then fed into a comparison algorithm where

transformed comparison units are compared to each other to find matches. The output

of match detection is a list of matches in the transformed code which is represented or

aggregated to form a set of candidate clone pairs. Each clone pair is normally represented

as the source coordinates of each of the matched fragments in the transformed code.

¶ Formatting: In this phase, the clone pair list for the transformed code obtained by the

comparison algorithm is converted to a corresponding clone pair list for the original code

base. Source coordinates of each clone pair obtained in the comparison phase are

mapped to their positions in the original source files.

¶ Post-processing: In this phase, clones are ranked or filtered using manual analysis or

automated heuristics.

¶ Aggregation: While some tools directly identify clone classes, most return only clone

pairs as the result. In order to reduce the amount of data, perform subsequent analyses

or gather overview statistics, clones may be aggregated into clone classes.

14

3 RELATED WORK

Many clone detection approaches have been proposed in the literature. Based on the level of

analysis applied to the source code, the techniques can roughly be classified into three main

categories: textual, lexical and syntactic.

1. Textual approach: Textual approaches (or text-based techniques) use little or no

transformation on the source code before the actual comparison, and in most cases raw

source code is used directly in the clone detection process. For example, SDD, NICAD,

Simian1 etc.

2. Lexical approach: Lexical approaches (or token-based techniques) begin by transforming

the source code into a sequence of lexical “tokens” using compiler-style lexical analysis.

The sequence is then scanned for duplicated subsequences of tokens and the

corresponding original code is returned as clones. Lexical approaches are generally more

robust over minor code changes such as formatting, spacing, and renaming than textual

techniques. For example, Dup, CCFinder, CP-Miner etc.

3. Syntactic approaches: Syntactic approaches (or tree-based approaches) use a parser to

convert source programs into parse trees or abstract syntax trees which can then be

processed using either tree matching or structural metrics to find clones. For example,

CloneDr, Deckard, CloneDigger etc.

In this section, the state of the art is summarized in automated clone detection by introducing

and clustering available clone-detection tools and techniques by category. The techniques can be

distinguished primarily by the type of information their analysis is based on and the kinds of

analysis techniques that they use. Table 3.1 provides a high-level overview of the techniques and

tools in the form of a taxonomy where the first column shows the underlying approach of the

tools/techniques, the second column either shows the name of the corresponding tool or the last

name of the first author has been used as the tool name (if no tool name is found) and the third

column shows their one sentence description.

15

Table 3.1: Taxonomy of Clone Detection Techniques and Tools

Approach Tool/1stAuthor One Sentence Description

Text-based Approach

Johnson
Hashing of strings per line, then textual

comparison

Duploc
Hashing of strings per line, then visual

comparison using dot plots

DuDe
Composes smaller isolated fragments of

duplication with scatter-plot

SDD

Data structure of an inverted index and

an index with n-neighbor distance

concept

NICAD
Syntactic pretty-printing, then textual

comparison with thresholds

Simian
Textual comparison with flexible options

(such as, ignore all identifiers)

Token-based Approach

Dup Suffix trees for tokens per line

CCFinder
Token normalizations, then suffix-tree

based search

RTF
Flexible tokenization and suffix-array

comparison

CP-Miner
Data mining for frequent token

sequences

CPD
Karp-Rabin string matching algorithm

with frequency table of tokens

CloneDetective
Normalized token comparison integrated

with Visual Studio

clones
Normalized token comparison with suffix-

tree

16

3.1 TEXTUAL APPROACHES

Textual approaches use little or no transformation/normalization on the source code before the

actual comparison. In most cases raw source code is used directly in the clone detection process.

And uses textual comparison or string matching between code fragments for clone detection.

Johnson [12, 13] pioneered text-based clone detection using “fingerprints” on substrings of the

source code. First, code fragments of a fixed number of lines are hashed. A sliding window

technique in combination with an incremental hash function is used to identify sequences of lines

having the same hash value as clones. To find clones of different lengths, the sliding window

technique is applied repeatedly with various lengths. This approach can only identify the exact

matches in the code fragments. It cannot handle the whitespaces and comments.

One of the newer text-based clone detection approaches is that of Ducasse et al. [14]. The

technique is based on dot plots. A dot plot – also known as a scatter plot – is a two-dimensional

chart where both axes list source entities. In the case of the approach by Ducasse et al.,

comparison entities are the lines of a program. There is a dot at coordinate (x, y) if x and y are

iClones
clones is adapted to detect clones over

multiple versions at a time

Tree-based Approach

CloneDr
Hashing of syntax trees and tree

comparison

cpdetector
Serialization of syntax trees and suffix-

tree detection

Deckard
Metrics for syntax trees and metric vector

comparison with hashing

CloneDetection

XML representation of ASTs with

frequent item sets techniques of data

mining

CloneDigger
XML representation of ASTs and anti-

unification/code abstraction

17

equal. Two lines must have the same hash value to be considered equal. Dot plots can be used

to visualize clone information, where clones can be identified as diagonals in dot plots. The

detection of clones in dot plots can be automated, and Ducasse et al. use string-based dynamic

pattern matching on dot plots to compare whole lines that have been normalized to ignore

whitespace and comments. Diagonals with gaps indicate possible Type-3 clones, and a pattern

matcher is run over the matrix to find diagonals with holes up to a certain size. This approach can

identify the type-1 clone perfectly, but have a poor performance in type-3 clones. It missed some

nearby clones, which are called near miss clones.

An extension of the Ducasse et al. approach is used by Wettel & Marinescu [15] to find near miss

clones using dot plots. Starting with removal of whitespace and comments, use string based

dynamic pattern matching in the lines having the same hash value. Then the algorithm chains

together neighboring lines to identify certain kinds of Type-3 clones which are missed in the

approach followed in Ducasse et al. It improves the performance of Ducasse et al. in detecting

type-3 clones, but cannot find all the type-3 clones.

SDD [16] is another similar approach that uses the method proposed in Ducasse et al. First,

normalize the source code by removing whitespace and comments. Then using the string based

dynamic pattern matching it gets the hash value of the strings and put them in the dot plots.

Then this approach applies an n-neighbor approach in finding near-miss clones. It can detect the

near miss clones missed by the approach proposed in Ducasse et al.

NICAD [17] is also text-based approach. However it exploits the benefits of tree-based structural

analysis, which is based on lightweight parsing to implement flexible pretty-printing, code

normalization, source transformation and code filtering. Although NICAD is essentially a hybrid

technique, it is considered as a text-based approach because it uses textual comparisons in the

matching part of the process. It can identify some type-2 clones as well as type-1 and type-3

clones.

Marcus and Maletic [18] apply Latent Semantic Indexing (LSI) to source text in order to find high

level concept clones, such as, Abstract Datatypes (ADTs), in the source code. This information

retrieval approach limits its comparison to comments and identifiers, returning two code

18

fragments as potential clones or a cluster of potential clones when there is a high level of

similarity between their sets of identifiers and comments.

Using the row code, without normalizing the identifier, these techniques obtains better

performance in type-1 and type-3 clones. But still there is no analysis on the performance of the

text-based approaches in detecting type-2 and type-4 clones.

3.2 LEXICAL APPROACHES

Lexical approaches (or token-based techniques) begin by transforming the source code into a

sequence of lexical “tokens” using compiler-style lexical analysis. The sequence is then scanned

for duplicated subsequences of tokens and the corresponding original code is returned as clones.

Lexical approaches are generally more robust over minor code changes such as formatting,

spacing, and renaming than textual techniques.

Efficient token-based clone detection was pioneered by Brenda Baker. In Baker’s tool Dup [3],

lines of source files are first divided into tokens by a lexical analyzer. Tokens are split into

parameter tokens (identifiers and literals) and non-parameter tokens, with the non-parameter

tokens of a line summarized using a hashing function, and the parameter tokens are encoded

using a position index for their occurrence in the line. This encoding abstracts away from concrete

names and values of parameters, but not from their order, allowing for consistently parameter-

substituted Type-2 clones to be found. All prefixes of the resulting sequence of symbols are then

represented by a suffix tree, a tree where suffixes share the same set of edges if they have a

common prefix. If two suffixes have a common prefix, obviously the prefix occurs more than once

and can be considered a clone.

The technique allows one to detect Type-1 and Type-2 clones, and Type-3 clones can be found

by concatenating Type-1 or Type-2 clones if those are lexically not farther than a user-defined

threshold away from each other. These can be summarized using a dynamic-programming

technique [19]. Kamiya et al. later extended this technique in CCFinder [4], using additional

source normalizations to remove superficial differences such as changes in statement bracketing

such as, if(a) b=2; vs. if(a) {b=2;}. CCFinder is itself used as the basis of other techniques, such as

19

Gemini [21], which visualizes near-miss clones using scatter plots, and RTF [20], which uses a

more memory-efficient suffix-array in place of suffix trees and allows the user to tailor

tokenization for better clone detection.

CP-Miner [22] is another state-of-the-art token-based technique, which uses frequent

subsequence data mining to find similar sequences of tokenized statements. A token- and line-

based technique has also been used by Cordy et al. [23] to detect near-miss clones in HTML web

pages. An island grammar is used to identify and extract all structural fragments of cloning

interest, using pretty-printing to eliminate formatting and isolate differences between clones to

as few lines as possible. Extracted fragments are then compared to each other line-by-line using

the Unix diff algorithm to assess similarity.

As syntax is not taken into account, clones found by token-based techniques may overlap

different syntactic units. However, using either preprocessing or post-processing, clones

corresponding to syntactic blocks can be found if block delimiters are known or lightweight

syntactic analysis such as island parsing is added.

3.3 TREE-MATCHING APPROACHES

Tree-matching approaches (or tree-based techniques) find clones by searching similar sub trees.

Variable names, literal values and other leaves (tokens) in the source may be abstracted in the

tree representation, allowing for more sophisticated detection of clones.

One of the pioneering tree-matching clone detection techniques is Baxter et al.’s CloneDr [7]. A

compiler generator is used to generate a constructor for annotated parse trees. Subtrees are

then hashed into buckets. Only within the same bucket, subtrees are compared to each other by

a tolerant tree matching. The hashing is optional but reduces the number of necessary tree

comparisons drastically.

This approach has been adapted by the AST-based clone detectors of Bauhaus [24] as ccdiml. The

main differences from CloneDr are ccdiml’s explicit modeling of sequences, which eases the

search for groups of subtrees that together form clones, and its exact matching of trees. Yang et

20

al. [6] has proposed a dynamic programming approach for handling syntactic differences in

comparing similar subtrees.

Wahler et al. [5] find exact and parameterized clones at a more abstract level by converting the

AST to XML and using a data mining technique to find clones. Structural abstraction, which allows

for variation in arbitrary subtrees rather than just leaves (tokens), has been proposed by Evans

et al. [2] for handling exact and near-miss clones with gaps.

To avoid the complexity of full subtree comparison, recent approaches use alternative tree

representations. In the approach of Koschke et al. [25], AST subtrees are serialized as AST node

sequences for which a suffix tree is then constructed. This idea allows to find syntactic clones at

the speed of token-based techniques. A function-level clone detection approach based on suffix

trees has been proposed by Tairas and Gray based on Microsoft’s new Phoenix framework [26].

A novel approach for detecting similar trees has been presented by Jiang et al. [27] in their tool

Deckard. In their approach, certain characteristic vectors are computed to approximate the

structure of ASTs in a Euclidean space. Locality Sensitive Hashing (LSH) is then used to cluster

similar vectors using the Euclidean distance metric (and thus can also be classified as a metrics

based techniques) and thus finds corresponding clones.

3.4 COMPARISON STUDIES AMONG CODE CLONE DETECTION TOOLS AND

TECHNIQUES

Although there is no work in the literature that provides a scenario-based evaluation of the

techniques and tools similar to this study, several tool comparison experiments have been

conducted to estimate the abilities of the tools in terms of precision, recall, and time and space

requirements.

One of the first experiments was conducted by Bailey and Burd [28], who compared three state-

of-the-art clone detection and two plagiarism detection tools. They began by validating all the

clone candidates of the subject application obtained with all the techniques of their experiment

21

to form a human oracle, which was then used to compare the different techniques in terms of

several metrics to measure various aspects of the reported clones.

Although they were able to verify all the clone candidates, the limitations of the case study in

terms of a single subject system, modest system size and validation subjectivity may make their

findings less than definitive. Moreover, the intention of their analysis was to assist in preventative

maintenance tasks, which may have influenced their clone validation process.

Considering the limitations of Burd and Bailey’s study, Bellon et al. set out to conduct a larger

tool comparison experiment [1] on the same three clone detection tools used in Burd and Bailey’s

study and three additional clone detection tools. They also used a more diverse set of larger

software systems, consisting of four Java and four C systems totaling almost 850 KLOC. As in the

study of Burd and Bailey, a human oracle validated a random sample of about 2% of the candidate

clones from all the tools evenly and blindly. While their study is the most extensive to date, only

a small proportion of the clone candidates were oracled and several other factors may have

influenced the results [29]. Bellon’s framework has been reused in experiments by Koschke et al.

[25] and Ducasse et al. [14] (partially), but without any improvements to the framework.

Rysselberghe and Demeyer [30, 31] have evaluated prototypes of three representative clone

detection techniques, providing comparative results in terms of portability, kinds of duplication

reported, scalability, number of false matches, and number of useless matches. However, they

did not make a reference set, used relatively small subject systems and did not provide the

reliability of the judge(s) that validated the found clones. Moreover, rather than quantitative

evaluation of the detection techniques, their intention was to determine the suitability of the

clone detection techniques for a particular maintenance task (refactoring) which might have

influenced their clone validation.

Another interesting study has been conducted by Bruntink et al. [32], in which several clone

detection techniques are evaluated in terms of finding known cross-cutting concerns in C

programs with homogeneous implementations.

22

3.5 SUMMARY

Although there are different comparative analysis is available, each of them has chosen a number

of tools and compared them using precision, recall, computational complexity and memory use.

But it is very important to know which tool or technique should be used in different types of

clones. It will give the user an idea about which one they should use in particular scenario.

Unfortunately, there is no comparison that helps to understand which tool or technique works

better in different types of code clones. There is also no evaluation of the most recent tools, such

as iClones and clone detection feature of visual studio.

23

4 METHODOLOGY

A tool to identify code clones in source code is developed in this chapter. As discussed in the

earlier chapters a comparison study among will be proposed based on clone types. For this, eight

techniques will be considered. Five of them are free tools found through the internet. The others

are implemented as a tool where user input a java project and select one of the approaches and

the tool perform the selected approach on the given source code. Then it will show the matched

lines found in the source code.

4.1 OVERVIEW OF THE IMPLEMENTED TOOL

A comparative study among code clone detection tools and techniques are proposed in this

research project. The matrices of the comparison are the clone types. For this study, the following

tools and techniques are considered

1. Johnson [12, 13]

2. SDD [16]

3. CCFinder [4]

4. CPD [34]

5. Clones [28]

6. CP-Miner [22]

7. CloneDigger [11] and

8. CloneDr [7]

CP-Miner and CPD are free tool, SDD and cloneDr are found as eclipse plugin and clones is a visual

studio clone detection feature. The other three techniques will be implemented as a tool. The

overview of the implemented tool is shown in Figure 4.1.

24

Figure 4.1: Overview of the implemented tool.

User will give a java project as input a java project and give a choice which approach s/he is willing

to use. Then the tool generate clone classes using the chosen approach. Johnson is a text based

approach of detecting clones. It parses the whole source code as text and matches the code

fragments using sliding window technique. CCFinder is a token-based approach which first

normalizes the identifiers and parse the normalized source as tokens. Then generate suffix tree

using the token sequences and perform a tree matching algorithm to detect the clones. On the

other hand CloneDigger is a tree-based clone detection approach. At first it generates Abstract

Syntax Tree (AST) by parsing the source code. Then matches the sub-trees to detect the clones.

25

4.2 DESCRIPTION OF THE IMPLEMENTED TOOL

. The tool contains three approaches. Those are

1. Johnson [12, 13],

2. CCFinder [4] and

3. CloneDigger [11].

A brief description of the approaches is given in the following sub-sections.

4.2.1 Johnson

It is the earliest approach of clone detection. It is a text based clone detection technique where

the source is considered as text and analyzed by the way documents are analyzed. It does not

use any modification in the source code when matching. The sliding window technique used in

the matching phase of this approach. The approach can be summarized as,

1) For each file being considered, apply a text to text transformation to discard characters

not to be considered for matching. For this study, this is an identity transformation

(output equals input). However, various types of approximate matching can be

accommodated by discarding different parts of the input.

2) Generate a set of substrings that cover the source (i.e., every character of text appears in

at least one substring).

3) Identify which of the substrings match (i.e., have the same sequence of characters).

4) Transform this database of raw matches into a form that more concisely expresses the

same information.

5) Perform task-specific data reduction.

6) Summarize high-level matches.

Steps (2) and (3) are information collecting phases, (4) is an information-preserving

transformation, (5) an aggregation and simplification phase, and (6) the presentation of results

in a useful form. Phase (1) provides greater sensitivity for particular types of input.

26

4.2.2 CCFinder

CCFinder is token-based code clone detection tool. It is proposed by Kamiya et al. [4]. CCFinder

uses a suffix-tree algorithm with both time and space complexities O(mn), where m is the

maximum length of involved clones and n is the total length of the source file. If it would be

assumed that m does not depend on n and it is bounded by some fixed length, the time and space

complexities will practically be O(n).

The optimizations employed inCCFinder to handle large source files are as follows:

¶ Alignment of Token Sequence: Source code has its inherent granularity such as character,

token, statement, or block. Code portions of a code clone should begin at their boundary.

For example, a code portion, which begins at the middle of a statement X and ends the

middle of a statement Y, is less useful than a code portion which begins at the beginning

of Y. As a simple filtering for this purpose, it allow only specific tokens at the beginning of

clones as leading tokens. Keywords that initiate statements are leading tokens. In C and

C++ source files, those keywords are ‘#’, ‘{’, keywords for selection statements (else, if,

switch, etc.), iteration statements (do, for, and while), jump or structured exception

handling statements (break, catch, return, etc), and declarations (class, enum, typedef,

etc). Also, tokens following keywords that terminate statements (‘;’, ‘)’} or labels (‘:’) are

also leading tokens. The number of nodes in the suffix tree was reduced to one third by

this filtering. This technique might slightly reduce the sensitivity of clone detection, but

practically it is very important to make the technique scalable.

¶ Repeated Code Removal: Repetition of a short code portion tends to generate many

clone pairs. For example, consider the following code:

switch (c) {

case '0' : value = 0; break;

case '1' : value = 1; break;

case '2' : value = 2; break;

case '3' : value = 3; break;

case '4' : value = 4; break;

27

 }

Now, consider that the following code section is also included in the target source files:

case 'a':

flag = 2;

break;

 In this case, five code portions make a clone class, { a2-a2,a3-a3, ..., a6-a6, b1-b3 }, where

each pair of the code portions makes a clone pair, and the number of maximal clone pairs

are φC2 = 15, in total. To avoid this explosion of clone pairs, a heuristic approach is

introduced. Upon building a suffix-tree, if a repetition of a2 is identified at a3, the

succeeding repetition section (a3-a6) is not intentionally inserted into the tree, so that a

part of the clone pairs is not being reported. However, the clone pair (a2-a2, b1-b3) is still

extracted, which offers sufficient information. The repeated code removal process also

prevents detection of self-clones, e.g., (a2-a5, a3- a6), or repetition of “constant”

declarations.

¶ Concatenation of Tokens: Just before computing the match in the token sequence,

abutting tokens, except for punctuator keywords, are concatenated. This process reduces

the length of a token sequence in exchange for an increase in variation of the tokens.

¶ Division of Large Archive of Source Files: If the total size of source files exceeds the

memory space for a single suffix-tree, the tool automatically employs a ‘divide and

conquer’ approach. The input source files are divided into several parts. For each

combination of the parts, a sub-suffix tree is built to extract clone pairs. The total

collection of clone pairs will finally be the output. Let m be the number of subsets of

source files, and then the number of pairs of the chunks (i.e., the number of constructed

subsuffix trees) is mC2. Therefore, the time complexity becomes O(ά).

4.2.3 CloneDigger

CloneDigger is a tree-based code clone detection technique. In order to find code clones using

AST it is needed to compare each subtree to each other subtree in AST. Computing the similarities

of all subtree pairs are not efficient, which complexity of computation is O(ὔ),where N is

number of nodes in AST. To increase the scalability of the approach a hash function is used that

28

partitions the AST into similar subtrees. If there are two subtrees whose similarity exceeds the

threshold then these subtrees are called clones.

Hashing function is used to hash subtrees into some buckets if the mass of the subtree exceeds

the mass threshold(implemented by basic algorithm given below).The single subtree clone were

detected by using hashing function but the subtree sequence clone cannot be detected. To

overcome from this problem a list structure is built where each list is associated with a sequence

in the program and stores the hash codes of each subtree element of associated sequence. The

algorithm for implementing this is given as below-

Basic Algorithm

1 Clones=ф

2 For each subtree i

3 If mass(i)>=Threshold

4 Then hash i to bucket

5 For each subtree i and j in the same bucket

6 If Compare tree(i,h) > SimilarityThreshold

7 Then For each subtree s of i

8 If IsMember(clone s,s)

9 Then RemoveClonePair(clone s,s)

10 For each subtree s of j

11 If IsMember(clone s,s)

12 Then RemoveClonePair(clone s,s)

13 AddClonePair(clones,i,j)

SEQUENCE DETECTION ALGORITHM

1 Build the list structure s describing sequences

2 For k=MinimumSequenceLengthThreshold to MaximumSequenceLength

3 Place all subsequences of length k into buckets according to subsequence hash

29

4 For each subsequence i and j in the same bucket

5 If CompareSequences(i,j,k)>SimilarityThreshold

6 Then

7 RemoveSequenceSubclonesOf(clones i,j,k)

8 AddSequenceClonePair(clones i,j,k).

Clone detection by using abstract syntax tree and comparing each subtree or subtree sequence

results in finding out exact and near miss clone.

4.3 SUMMARY

A tool was developed that implements three approaches, that are chosen for evaluation but

implementation is not available, to perform an investigation on comparison among code clone

detection techniques. This tool takes java source code as input, can able to apply three

approaches on it and output the clone classes available on the source code. Using this tool the

three approaches will be evaluated in the next chapter.

30

5 IMPLEMENTATION AND RESULT ANALYSIS

This chapter aims to experimentally evaluate the performance of the used approaches (for

example Johnson, CloneDigger etc.) by applying these on some source codes with different types

of clones. Three approaches are implemented in Java programming language as a tool. The

environment setup for the tool and the other 5 tools are discussed at first. Then a brief

description of the scenarios of different clone types and the performances of the tools on these

scenarios will be provided.

5.1 ENVIRONMENTAL SETUP

This section discusses the equipment that were used to implement the tool as well as to run the

experimental procedures for evaluating the approaches. Eight approaches are evaluated in this

experiment. They are –

1. Johnson [12, 13] (implemented)

2. SDD [16]

3. CCFinder [4] (implemented)

4. CPD [34]

5. Clones [28]

6. CP-Miner [22]

7. CloneDigger [11] (implemented) and

8. CloneDr [7]

The implemented approaches are implemented as a tool. This tool is implemented in Java

programming language. In order to implement the tool, following tools and libraries are used

• Eclipse Mars (4.5.0) []

• JavaParser (2.3.1) []

The experiments on the tool are performed on following PC configuration

• 2.5GHz Intel Core i5

• 4GB RAM

• Windows 10 64bit

31

• Java SE 1.8

The environment setup for the other tools is given below:

1. SDD: This is an eclipse plugin. It is platform independent. Eclipse Mars is used for running

this approach. The experiments on this tool are performed on following PC configuration

o 2.5GHz Intel Core i5

o 4GB RAM

o Windows 10 64bit

o Java SE 1.8

2. CPD: This is a linux based tool. The experiments on this tool are performed on following

PC configuration

o 2.5GHz Intel Core i5

o 4GB RAM

o Ubuntu 14.04 64bit

3. Clones: This is a clone detection feature incorporated with the “Visual Studio”. We use

this on “Visual Studio 2013”. The experiments on this tool are performed in the similar PC

configuration used in SDD.

4. CP-Miner: This is a software that is developed for windows platform. The experiments

on this tool are performed in the similar PC configuration used in SDD.

5. CloneDr: This is also an eclipse plugin and also platform independent. The experiments

on this tool are performed in the similar PC configuration used in SDD.

32

5.2 COMPARATIVE ANALYSIS

Clone detection techniques are often inadequately evaluated, and only a few studies have looked

at some of the techniques and tools []. Of these, the Bellon et al. [2] study is the most extensive

to date, with a quantitative comparison of six state-of-the-art techniques, essentially all of those

with tools targeted at the C and Java languages. However, even in that careful study, only a small

proportion of the clones were oracled, and a number of other factors have been identified as

potentially influencing the results []. The general lack of evaluation is exacerbated by the fact that

there are no agreed upon evaluation criteria or representative benchmarks. Finding such

universal criteria is difficult, since techniques are often designed for different purposes and each

has its own tunable parameters.

In an attempt to compare all available clone detection techniques more uniformly, a clone-type

based approach is proposed on five free and three implemented code clone detection tools. A

small set of hypothetical program editing scenarios representative of typical changes to

copy/pasted code is designed in Roy et al. [1] (Figure 5.1, 5.2, 5.3, 5.4). Based on these

hypothetical scenarios, it is checked how well the various clone detection techniques perform.

From a program comprehension point of view, finding such true clones is useful since

understanding a representative copy from a clone group assists in understanding all copies in

that group []. Moreover, replacing all the detected similar copies of a clone group by a function

call to the representative copy (such as refactoring) can potentially improve understandability,

maintainability and extensibility, and reduce the complexity of the system.

Table 5.1, 5.2, 5.3, 5.4 provides an overall summary of the results of evaluations. The result will

be shown using the following matrices:

¶ Perform well: Perform well in detecting a scenario in code when the matching threshold

is over 90%. 1 point will be given to the technique for this scenario.

¶ Depends on the threshold: the technique detects this scenario when the threshold is in

between 70% to 90%. 1/2 point will be given to the technique for this scenario.

¶ Cannot detect: the technique cannot detect this scenario if the threshold is less than 70%.

This technique will get 0 point for this scenario.

33

In the following paragraphs, every scenario is considered in estimating the ability of the

techniques to accurately detect those.

5.2.1 Type 1 (Change in formatting)

Roy et al. [1] copied a function that calculates the sum and product of a sequence of numbers

(1...n) three times, making changes in whitespace in the first fragment (S1(a)), changes in

commenting in the second (S1(b)), and changes in formatting in the third (S1(c)) (Figure 5.1).

An ideal clone detection technique should recognize all three copy-pasted/modified fragments

as clone pairs with the original or form a clone class for them. Text-based techniques are sensitive

to format alternations and thus, may not detect scenario S1(c). The technique proposed in

Johnson et al. [12,13] cannot detect S1(c), because it is a line-based comparison approach. On

the other hand, SDD [16] may detect S1(c) depending on the threshold in matching the lines.

Those token-based techniques, which ignores formatting and comments can easily detect these

exact matches. CPD [34] ignores formatting but does not ignore comments, so it fails in detecting

S1(b). CCFinder [4], clones [28], CP-Miner [11] ignore formatting and comments. So, these

Perform well in detecting all the scenarios described in Figure 5.1. The performance of the

approaches is shown in Table 5.1.

Table 5.1: Evaluation of the tools on clone type-1

Citation S1(a) S1(b) S1(c)

Johnson Perform well Perform well Cannot detect

SDD Perform well Depends on the

threshold

Depends on the

threshold

CCFinder Perform well Perform well Perform well

CPD Perform well Cannot detect Perform well

clones Perform well Perform well Perform well

CP-Miner Perform well Perform well Perform well

CloneDigger Perform well Perform well Perform well

CloneDr Perform well Perform well Perform well

Best Rater SDD SDD CloneDr

34

Figure 5.1: Clone type-1 scenarios.

Tree-based techniques ignore formatting differences and comments and should detect these

scenarios very well if they look for exact subtrees without ignoring tree-leaves (in most cases

they ignore leaves). However, some tree-based techniques use alternative representations of the

parse-tree/AST (for example Deckard works on characteristic vectors of the parse-tree) and may

not detect them accurately. Moreover, a recent study [29] shows that an AST- based exact

matching function clone detection technique can even miss some exact function clones detected

by a text-line based technique. Although CloneDigger [11] and CloneDr [7] can detect all the

scenarios of type-1 code clones.

35

SDD [16] is the best rater for S1(a), S1(b) although all the tools except CPD [34] perform well in

these scenarios. However we rate SDD because it is a text based approach, and text based

approaches take a little time in parsing the source code and in textual matching phase. Cloner,

CloneDigger has best performance in detecting S1(c), but CloneDr is rated as best because of its

robust tree matching algorithm.

5.2.2 Type 2 (change in identifiers)

Roy et al. [1] made four more copies of the function, using a systematic renaming of identifiers

and literals in the first fragment (S2(a)), renaming the identifiers (but not necessarily

systematically) in the second fragment (S2(b)), renaming data types and literal values (but not

necessarily systematically) in the third fragment (S2(c)), and replacing some parameters with

expressions in the fourth fragment (S2(d)) (Figure 5.2).

Again, an ideal clone detection technique should detect all four modified fragments as clone pairs

with the original function or should form a clone class for those. Dup is the robust in detecting

scenario S2(a) because of its novel use of parameterized suffix-trees.

Table 5.2: Evaluation of the tools on clone type-2

Citation S2(a) S2(b) S2(c) S2(d)

Johnson Cannot detect Cannot detect Cannot detect Cannot detect

SDD Cannot detect Cannot detect Cannot detect Cannot detect

CCFinder Perform well Perform well Perform well Cannot detect

CPD Perform well Perform well Perform well Cannot detect

clones Perform well Perform well Perform well Cannot detect

CP-Miner Perform well Perform well Perform well Depends on the

threshold

CloneDigger Perform well Perform well Perform well Perform well

CloneDr Perform well Perform well Perform well Depends on the

threshold

Best Rater CloneDr CloneDr CloneDr CloneDigger

36

Figure 5.2: Clone type-2 scenarios.

None of the text-based techniques is likely to do well with these scenarios since those normally

compare program text without normalization and are therefore fragile to identifier renaming.

Token-based techniques can detect scenarios S2(a), S2(b) and S2(c) well, but are likely to also

have many false positives due to their identifier normalizations and transformations. Those

generally failed to detect S2(d), as it is not really a change in identifiers. However CP-Miner can

detect this depending on the threshold in token matching.

Tree-based techniques may also detect scenarios S2(a), S2(b) and S2(c) well as these techniques

normally ignore identifiers and literals in comparison. However CloneDr is the best rater for these

37

scenarios for its robust sub-tree matching algorithm. On the other hand, for scenario S2(d), tree-

based CloneDigger seems to be well suited, as it can apply structural abstraction on arbitrary

subtrees. CloneDr also can detect S2(d), but it depends on the threshold. So CloneDigger is the best rater

for this scenario.

5.2.3 Type 3 (add or delete lines)

Roy et al. [1] made five more copies of the function and this time making small insertions within

a line in the first fragment (S3(a)), small deletions within a line in the second fragment (S3(b)),

insertion of some new lines in the third fragment (S3(c)), deletion of some lines from the fourth

fragment (S3(d)), and making changes to some whole lines in the fifth fragment (S2(e)) (Figure

5.3).

Text-based tools cannot detect this type because those cannot use any normalized or

transformed text in the matching phase, and cannot cope with the additional lines. Token-based

CP-Miner is likely to work well with these scenarios. CP-Miner uses a frequent subsequence data

mining algorithm which allows it to tolerate gaps in cloned segments. The token-based SDD can

also identify such scenarios using scatter plot visualization but when threshold is little bit lower.

Table 3 shows the performances of the tools on the scenarios of type-3.

Table 5.3: Evaluation of the tools on clone type-3

Citation S3(a) S3(b) S3(c) S3(d) S3(e)

Johnson Cannot detect Cannot detect Cannot detect Cannot detect Cannot detect

SDD Perform well Perform well Depends on the

threshold

Depends on the

threshold

Depends on the

threshold

CCFinder Depends on the

threshold

Depends on the

threshold

Cannot detect Cannot detect Cannot detect

CPD Cannot detect Cannot detect Cannot detect Cannot detect Cannot detect

Clones Cannot detect Cannot detect Cannot detect Cannot detect Cannot detect

CP-Miner Perform well Perform well Perform well Perform well Perform well

CloneDigger Perform well Perform well Cannot detect Cannot detect Cannot detect

38

CloneDr Perform well Perform well Depends on the

threshold

Perform well Perform well

Best Rater SDD SDD CP-miner CloneDr CloneDr

Figure 5.3: Clone type-3 scenarios.

39

In scenarios S3(a) and S3(b), SDD, CP-Miner, CloneDigger and CloneDr perform well and we rate

SDD for its little execution time. CP-Miner rated best for S3(c) as no other tools performs well in

this scenario. CP-Miner and CloneDr have well performance in S3(d) and S3(e). However CloneDr

is selected as best rater as tree based techniques have better execution time than token based

techniques.

5.2.4 Type 4 (reorder data dependent and control statements)

Roy et al. [1] made four more copies of the function and this time reordered the declaration

statement in the first fragment (S4(a)), reordered data independent statements in the second

(S4(b)), reorders data dependent statements in the third (S4(c)), and replaced a control

statement with different one in the fourth (S4(d)) (Figure 5.4).

Again, it is expected that an ideal clone detection technique should be robust enough to detect

such modified code fragments as clone pairs with the original or form a clone class for those.

None of the used tools works well in this scenarios. CP-Miner performs well in S4(a), S4(b) and

s4(c), but only when there is a very low threshold in matching tokens. It appears that only PDG-

based techniques are likely to work well with scenarios S4(a) and S4(b). PDG-based techniques

use data and control flow information, which remains unchanged across reordering of

declarations and data independent statements. Reordering of data dependent statements may

change data and control flow however, so those may not Perform well with scenario S4(c). To

detect scenario S4(d), exhaustive source transformation may be necessary.

Table 5.4: Evaluation of the tools on clone type-4

Citation S4(a) S4(b) S4(c) S4(d)

Johnson Cannot detect Cannot detect Cannot detect Cannot detect

SDD Cannot detect Cannot detect Cannot detect Cannot detect

CCFinder Cannot detect Cannot detect Cannot detect Cannot detect

CPD Cannot detect Cannot detect Cannot detect Cannot detect

clones Cannot detect Cannot detect Cannot detect Cannot detect

40

CP-Miner Depends on the

threshold

Depends on the

threshold

Depends on the

threshold

Cannot detect

CloneDigger Cannot detect Cannot detect Cannot detect Cannot detect

CloneDr Depends on the

threshold

Depends on the

threshold

Cannot detect Cannot detect

Best Rater CloneDr CloneDr CP-Miner None

Figure 5.4: Clone type-4 scenarios.

41

CloneDr and CP-Miner can detect S4(a), S4(b) depending on the threshold. Others have very poor

performance on detecting this scenarios. However CloneDr is selected as best rater as it is a tree

based technique. On the other hand, only CP-Miner can detect the scenario S4(c). So it is the best

rater for this scenario. No tools can detect the S4(d) with or without threshold.

Table 5.5 estimates the scenario coverage of the technique in points out of 16 and a percentage

of scenarios potentially detected, counting (low) and above as potential detection using the

matrices described in the start of the section result analysis.

Table 5.5: Coverage on the scenarios.

Citation Points (out of 16) Coverage (in percentage)

Johnson 2 13.50%

SDD 5.5 34.38%

CCFinder 7 43.75%

CPD 5 31.25%

clones 6 37.50%

CP-Miner 13 81.25%

CloneDigger 9 56.25%

CloneDr 12 75.00%

42

Figure 5.5: Coverage of the techniques.

5.3 SUMMARY

This chapter intends to demonstrate the implementation environment and result analysis of the

used techniques for this evaluation. The implemented approaches are implemented in Java

programming language. The implementation results are analyzed and evaluated with the other

five free tools of clone detection. The analysis shows the performance of different techniques in

different scenarios of various types of code clones described in [1]. The evaluation will help

someone in using the tools in different aspects.

43

6 CONCLUSION

This evaluations are not only intended for experts in clone detection, but also intended for

potential new users and builders of clone detection-based tools and applications. It is hoped that

it may also assist in identifying remaining open research questions, avenues for future research,

and interesting combinations of techniques. The evaluation results of this study are based on

estimating the performance of techniques using the most lenient values of all tunable scenarios,

and thus the findings differ from the results of empirical studies such as Bellon et al. [2].

6.1 DISCUSSION
As a demonstration of how this evaluation can be helpful, example combination of different

techniques/tools is provided to handle all of the scenarios used in this paper. Of course, many

other combinations can be derived based on user requirements, both in terms of different

scenarios and the techniques used. Such a combination might help one to understand how to

design a hybrid method to be robust across all types of clones or how to employ a set of different

tools to achieve a better result. The last row of Table 1, 2, 3, 4 list the best rated techniques for

each of the scenarios. Tempering with the properties of the techniques anyone can select a best

choice for each scenario.

For scenarios S1(a), S1(b), S3(a), S3(b) the text based SDD [16] seems best, being very good for

S3(a), S3(b) and good for S1(a) and S1(b) while ensuring linear time and space complexity. For

scenarios S1(c), S2(b) and S2(c), cloneDr [7] is chosen because it finds syntactic clones in linear

time and space. For scenario S2(d), CloneDigger [11] is chosen because it gets a good rating for

these scenario and, like cloneDr, it is AST-based, making it a promising choice for a hybrid. For

scenarios S3(c), S3(d) and S3(e), CP-Miner seems a good choice. For scenarios S4(a), S4(b) and

S4(d), CP-Miner [] might be a good choice, as it can detect such scenarios based on the threshold

and it seems to be faster than PDG-based techniques. Thus, the obtained combination is {SDD,

CP-Miner, CloneDr, CloneDigger). Several other combinations can easily be obtained based on

the results provided in this paper.

44

6.2 FUTURE WORK

Only eight state of art techniques are evaluated in this comparison study and a limited amount

of scenarios are used. If more techniques are evaluated with more scenarios then the result will

be more interesting. The results of this study may assist new potential users of clone detection

techniques in understanding the range of available techniques and tools and selecting those most

appropriate for their needs. It may also assist in identifying remaining open research questions,

avenues for future research, and interesting combinations of techniques.

45

7 REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo, Comparison and Evaluation of Clone

Detection Tools, Transactions on Software Engineering, 2007, pp. 33(9):577-591.

[2] M. Gabel, L. Jiang and Z. Su, Scalable Detection of Semantic Clones, in: Proceedings of the

30th International Conference on Software Engineering, ICSE 2008, pp. 321-330.

[3] B. Baker, A Program for Identifying Duplicated Code, in: Proceedings of Computing Science

and Statistics: 24th Symposium on the Interface, 1992, Vol. 24:4957, 24:49-57.

[4] T. Kamiya, S. Kusumoto and K. Inoue, CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code, IEEE Transactions on Software Engineering, 2002,

28(7):654-670.

[5] V. Wahler, D. Seipel, J. Gudenberg and G. Fischer, Clone Detection in Source Code by Frequent

Itemset Techniques, in: Proceedings of the 4th IEEE International Workshop Source Code Analysis

and Manipulation, SCAM 2004, pp. 128-135.

[6] W. Yang, Identifying Syntactic Differences between Two Programs, Software Practice and

Experience, 1991, 21(7):739-755.

[7] I. Baxter, A. Yahin, L. Moura and M. Anna, Clone Detection Using Abstract Syntax Trees, in:

Proceedings of the 14th International Conference on Software Maintenance, ICSM 1998, pp. 368-

377.

[8] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein, Pattern Matching for Clone

and Concept Detection, Journal of Automated Software Engineering, 1996, 3(1-2):77-108.

[9] J. Mayrand, C. Leblanc and E. Merlo. Experiment on the Automatic Detection of Function

Clones in a Software System Using Metrics, in: Proceedings of the 12th International Conference

on Software Maintenance, ICSM 1996, pp. 244-253.

[10] J. Krinke, Identifying Similar Code with Program Dependence Graphs, in: Proceedings of the

8th Working Conference on Reverse Engineering, WCRE 2001, pp. 301-309.

46

[11] R. Komondoor and S. Horwitz, Using Slicing to Identify Duplication in Source Code, in:

Proceedings of the 8th International Symposium on Static Analysis, SAS 2001, pp. 40-56.

[12] J. Johnson, Identifying Redundancy in Source Code Using Fingerprints, in: Proceedings of the

1993 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON 1993,

pp. 171–183.

[13] J. Johnson, Visualizing Textual Redundancy in Legacy Source, in: Proceedings of the 1994

Conference of the Centre for Advanced Studies on Collaborative research, CASCON 2004, pp.

171-183.

[14] S. Ducasse, M. Rieger and S. Demeyer, A Language Independent Approach for Detecting

Duplicated Code, in: Proceedings of the 15th International Conference on Software Maintenance,

ICSM 1999, pp. 109-118.

[15] R. Wettel and R. Marinescu, Archeology of Code Duplication: Recovering Duplication Chains

From Small Duplication Fragments, in: Proceedings of the 7th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2005, 8pp.

[16] S. Lee and I. Jeong, SDD: High performance Code Clone Detection System for Large Scale

Source Code, in: Proceedings of the Object Oriented Programming Systems Languages and

Applications Companion to the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA Companion 2005, pp. 140–141.

[17] C.K. Roy and J.R. Cordy, NICAD: Accurate Detection of Near-Miss Intentional Clones Using

Flexible PrettyPrinting and Code Normalization, in: Proceedings of the 16th IEEE International

Conference on Program Comprehension, ICPC 2008, pp. 172-181.

[18] A. Marcus and J. Maletic, Identification of High-level Concept Clones in Source Code, in:

Proceedings of the 16th IEEE International Conference on Automated Software Engineering, ASE

2001, pp. 107-114.

[19] B. Baker and R. Giancarlo, Sparse Dynamic Programming for Longest Common Subsequence

from Fragments, Journal Algorithms, 2002, Vol. 42 (2):231-254.

47

[20] H. Basit, S. Pugliesi, W. Smyth, A. Turpin and S.Jarzabek, Efficient Token Based Clone

Detection with Flexible Tokenization, in: Proceedings of the 6th European Software Engineering

Conference and Foundations of Software Engineering, ESEC/FSE 2007, pp. 513-515.

[21] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, On Detection of Gapped Code Clones Using

Gap Locations, in: Proceedings 9th Asia-Pacific Software Engineering Conference, APSEC 2002,

pp. 327–336.

[22] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, CP-Miner: Finding Copy-Paste and Related Bugs in Large-

Scale Software Code, IEEE Transactions on Software Engineering, 32(3):176-192.

[23] J.R. Cordy, T.R. Dean and N. Synytskyy, Practical Language-Independent Detection of Near-

Miss Clones, in: Proceedings of the 14th IBM Centre for Advanced Studies Conference, CASCON

2004, pp. 29-40.

[24] Project Bauhaus. URL http://www.bauhaus-stuttgart.de Last accessed 31 August 2016.

[25] R. Koschke, R. Falke and P. Frenzel, Clone Detection Using Abstract Syntax Suffix Trees, in:

Proceedings of the 13th Working Conference on Reverse Engineering, WCRE 2006, pp. 253-262.

[26] R. Tairas and J. Gray, Phoenix-Based Clone Detection Using Suffix Trees, in: Proceedings of

the 44th Annual Southeast Regional Conference, ACM-SE 2006, pp. 679-684.

[27] L. Jiang, G. Misherghi, Z. Su and S. Glondu, DECKARD: Scalable and Accurate Tree-based

Detection of Code Clones, in: Proceedings of the 29th International Conference on Software

Engineering, ICSE 2007, pp. 96-105.

[28] E. Burd, J. Bailey, Evaluating Clone Detection Tools for Use during Preventative Maintenance,

in: Proceedings of the 2nd IEEE International Workshop on Source Code Analysis and

Manipulation, SCAM 2002, pp. 36-43.

[29] B. Baker, Finding Clones with Dup: Analysis of an Experiment, IEEE Transactions on Software

Engineering, 2007, 33(9):608-621.

[30] F. Rysselberghe and S. Demeyer, Evaluating Clone Detection Techniques, in: Proceedings of

the International Workshop on Evolution of Large Scale Industrial Applications, ELISA 2003, 12pp.

48

[31] F. Rysselberghe and S. Demeyer, Evaluating Clone Detection Techniques from a Refactoring

Perspective, in: Proceedings of the 9th IEEE International Conference Automated Software

Engineering, ASE 2004, pp. 336- 339.

[32] M. Bruntink, A. Deursen, R. Engelen and T. Tourwe, On the Use of Clone Detection for

Identifying Crosscutting Concern Code, Transactions on Software Engineering, 31(10):804-818.

[33] Tool Clone Detective (part of ConQAT). URL http://conqat.in.tum.de/index.php/Main Page

Last accessed 30 October 2016.

[34] PMD’s CPD. URL http://pmd.sourceforge.net/cpd.html Last accessed October 2016.

[35] P. Bulychev and M. Minea, Duplicate Code Detection Using Anti-Unification, in: Spring Young

Researchers Colloquium on Software Engineering, SYRCoSE 2008, 4 pp.

