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Abstract

Code smells are more likely to stay inter-connected in software rather than remaining

as a single instance. These code smell clusters create maintainability issues in evolving

software. This paper aims to understand the evolution of the code smells in software,

by analyzing the behavior of these clusters such as size, number and connectivity.

For this, the clusters are first identified and then these characteristics are observed.

The identification of code smell clusters is performed in three steps - detection of code

smells (God Class, Long Method, Feature Envy, Type Checking) using smell detection

tools, extraction of their relationships by analyzing the source code architecture, and

generation of graphs from the identified smells and their relationships, that finally

reveals the smelly clusters. This analysis was executed on JUnit as a case study, and

four important cluster behaviors were reported.
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Chapter 1

Introduction

Abstract In a large software, a significant percentage of code smells are inter-

connected and co-occurred [1]. Studies, such as [2], showed that a combination of

code smells is more difficult to manage compared to a single instance of code smell.

In this study, these inter-related smelly code components are referred as smell clus-

ters. These smell clusters can have a serious impact on the manageability and overall

quality of software, specially if the software is evolving. This is because, as a system

grows older, instances of smells in it’s source code go through a complex process of

evolution [3] and often lead to bigger architectural problems known as anti-patterns

[4].

1.1 Key Terms

Before discussing the motivation and target of this study, few key terms are described,

to make it easier for the readers who are new to Code Smell research domain.

Code Smells are common coding practices which make code difficult to under-

stand for other developers [5]. Code smells do not hamper programs performance or

accuracy, but decrease understandability. In this thesis, the term ‘code smell’, ‘smell’
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Figure 1.1: Code Smell and Refactoring

and ‘bad smell’ are used interchangeably.

Smelly Components are the methods and classes that contain at least one code

smell [6]. There are two type of smelly component - ‘smelly class’ and ‘smelly method’.

Refactoring means rewriting or changing code to remove code smells from it [5].

In Figure 1.1 (Top), the method ‘updateUser’ takes too many parameters to per-

form perform some tasks. Although this function works correctly, it is not easy to

understand it at a glance because of the long list of parameters. This practice is known

as ‘Long Parameter List’ smell. ‘addUser’ is a ‘smelly method’ as it contains ‘Long

Parameter List’ smell, and therefore, it should be refactored. In Figure 1.1 (Bottom),

a refactored version of the code is presented, in which, ‘addUser’ is smell-free.

Smell Clusters are sets of architecturally connected smelly components. For ex-

ample, consider a smelly class C1, that contains a smelly method M1. So, M1 and C1
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are architecturally connected. Now consider a non-smelly class C2 contains a smelly

method M2. If M1 calls the method M2, then, C1, M1, and M2 is architecturally

connected. Therefore, C1, M1 and M2 is a smell cluster.

1.2 Motivation

Improving Code Quality. To keep pace with the ever-changing technology, a

software has to undergo a lot of changes, updates and bug-fixes. Changing or fix-

ing a software takes a lot of development time and effort if it’s code is not easily

understandable. Therefore, quality of a code depends on its understandability and

maintainability. However, in real-life software development, developers often ignore

the quality of code to optimize time and effort. This is because, they have to han-

dle other important issues of software development such as, performance, deadline,

resource management, etc. As a result, often a degradation of code quality is encoun-

tered.

Minimizing Code Smells. The common symptoms which indicate degradation

in code quality, are known as code smells. In real-life software development, it not

always possible to ensure quality of code, as a result, introduction of code smells in

imminent. According Chatzigeorgiou et al: [7], code smell is a recurring problem, and

cannot be eradicated completely. As code smell problem cannot be solved for good,

developers must refactor as many smells as possible and keep code maintainable. To

identify the most dangerous smells and refactor those, it is important to understand

the behavior of code smell.

Understanding the Behavior of Code Smells. During the last two decade,

many researchers concentrated on understanding the behavior of code smells [8, 3].

The early researches on code smell tried to identify the most harmful smells [9, 10].
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However, it is found that, a no single smell carries as much threat to maintainability

as a combination of smells [2]. Therefore, researchers concentrated on correlation

and co-occurrence on smells [11, 1]. They found that smells tend be interconnected

and form clusters of smells in software. This cluster of bad smells create severe

understandability and maintainability issues.

Understanding the Evolution of Smell Clusters. In spite of the problems

arose by the smell clusters in the evolution of software, it has not got enough focus

in research due to the complex connectivity of the smells. Although researchers have

focused on evolution of individual smells, to the best of authors’ knowledge no study

have been conducted on the evolution of smell clusters. Therefore, to achieve greater

knowledge about software maintainability, it is needed to observe smell clusters, and

understand how these clusters evolve in different versions of the software. That’s why

the ultimate aim of this study is - ‘Understanding the Evolution of Smell Clusters’

By achieving this goal, a better understanding of code smells can be obtained.

This will help to minimize code smells and ultimately improve code quality.

1.3 Research Questions

The target of this study is to understand how smelly clusters evolve with time. Three

research questions have been identified which can lead to this Target.

RQ1: How does the architectural connectivity of smelly components

evolve with time?

The first research question of this study, aims to understand how architectural

connection between smelly components change over time. In the literature of code

smells, it is seen that, number of smelly components in a software increase steadily

with time. Therefore, it can be assumed that, architectural connection between smelly

4



components will also increase from one version to the next. The target is to see

whether number of architectural connections in version n increases in version n+1.

RQ2: How does the existence of code smell clusters change over time?

This research question aims to understand how the smell clusters existing in a

specific version of software change in future versions of it. As the number of code

smells in a software increases with time, it can be assumed that, these smells will

create more clusters in later versions of software. Therefore, the target is to observe

whether the number of smelly clusters in version n of a software increase in version

n+1.

RQ3: Do all the smell clusters show similar pattern of evolution?

In this research question, the aim is to investigate, whether the smell clusters show

any specific pattern of evolution. It is known that, number of smelly components rises

as a software grows older. If it is assumed that, architectural connections between

smelly components also increase during this process, it is highly possible that, larger

clusters of smells will form. These large clusters might ultimately create a giant clus-

ter. Therefore, to answer this research question, the target is to investigate whether

smell clusters ultimately tend to create a giant cluster of smells. It is described in

the literature that, a combination of smells makes code relatively less maintainable

compared to a single smell. As the predicted giant cluster will holds a lot of smells, it

must be very difficult to manage. Therefore, the assumption is, more and more new

smells will be introduced into this cluster, and smell removal rate will be very low. It

will be investigated if similar situation is found in real-life systems.

This study is guided by these research questions. The goal is to find out whether

the assumption derived from the research question are accurate or not.
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1.4 Contribution

• FUESC: A novel framework ‘FUESC - Framework for Understanding Evolu-

tion of Smell Clusters’ is proposed in this study to investigate evolution of smell

clusters in a system. This framework presents a technique that observes consec-

utive versions of a software and extracts smell cluster properties such as change

of cluster size, change of connectivity in clusters, evolution of clusters, etc.

• SCIT: A java tool ‘SCIT’ is presented that implements ‘FUESC’ to understand

clustering behavior in real-life software. This tool analyzes different version of

java projects and identify smelly components, their connectivity, and finally

extracts smell clusters. By comparing smell clusters in different version of a

software, it can present evolution pattern of these clusters.

• Findings: To understand evolution pattern of smell clusters, using SCIT tool,

25 version of 3 open-source java projects (JUnit, Mockito and Commons-lang)

are examined. The finding from the case study is, smelly components tend to

architecturally connect with other smelly components in software, create smells

clusters, and eventually form a giant ‘Mega Cluster’ in which, smell initiation

is more likely to happen than smell elimination.

A case study was conducted to understand how the relationships between smelly

components of a source code change with the evolution of software. JUnit was selected

for the study. For 10 different versions of JUnit smell clusters were detected. By

comparing the clustering properties such as cluster size, cluster count, connectivity

etc. for all the versions few definitive characteristics were identified; that are - number

of connected code smell clusters increases steadily with time, smell clusters can be

categorized in three types (mega cluster, single-node cluster, and small cluster), smelly

6



components tend to create a mega cluster, and the size of the mega cluster increases

steadily with time.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows.

• Chapter 2: Literature of Code Smells In this chapter, a brief about re-

searches targeting code smells, and it’s impact and evolution is presented

• Chapter 3: FUESC: Framework for Understanding the Evolution of

Smell Clusters A novel technique is proposed using which multiple releases of

a software can be analyzed and clustering behavior of smells can be identified.

• Chapter 4: SCIT: Smell Cluster Inspection Tool A tool ‘SCIT’ is pre-

sented in this chapter. A case study is performed using this tool. The result of

the case study is also demonstrated in this chapter.

• Chapter 5: Result Analysis This chapter discusses the results of the ex-

periment and explains how those results answers the research questions of this

study.

• Chapter 6: Conclusion In this concluding chapter, a brief of the whole work

is summarized and future directions are described.
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Chapter 2

Literature of Code Smell

The features of code that decrease code quality and make it less maintainable, are

known as code smells [5]. Code smells make code difficult to understand or change,

and thus, make it difficult for developers to update, fix or enhance a software [12,

13]. Therefore, it is very important to eradicate smells for maintaining clean and

understandable code [14]. However, in real-life situation, it is not always feasible

for developers to maintain smell-free code as they have to handle other problems of

software development too such as resource limitation, pressure of deadline, software

performance, etc. Therefore, it is very important to understand how code smells

behave in a software. During the last two decades many researchers investigated code

smell, and its impact, relation and evolution. The literature shows that smells residing

in a software, degrade software quality, create complex relations, and influence the

evolution of the whole system.

In this chapter, first, definition of different code smells and taxonomy of these

are discussed. After that well-known techniques to detect code smells are described.

Then, it is presented how code smells degrade software quality, and finally the rela-

tions between code smells and evolution of those are described in separate sections.
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2.1 Code Smells

Undesired design flaws, known as code smells (or smells or bad smells), are

widely considered as indicators of decrease in software quality [15]. In 1999, Martin

Folwer first identified a set of common symptoms in code that are threat to software

quality and introduced the term ‘Code Smell’ to denote those [5]. According to his

definition, code smells are surface indications of bad design practices implemented by

developers. Although code smells do not interfere with the functionality, accuracy or

performance of a software, it makes a code difficult to understand [16]. For instance,

a long method with thousands of statements might provide accurate outputs in real-

time, but it certainly is not easy for a developer to understand it. In the same way,

use of structures and primitive data types instead of objects might speed-up a process,

but it will make it less updatable. Therefore, code smells do not bother the users of

a software, but those are big headaches for the developers.

History of code smell research. Research on code smells has a relatively short

history. Before the concept of ‘Code Smell’ was introduced, not many researches were

conducted to estimate quality of object oriented code. Chidamber et al: [17], in 1994,

first proposed a metric based approach to estimate object oriented code quality. In

the same year, Martin et al: [18] conducted a study to measure aspects of object

oriented code by using code metrics. The first book written on bad object oriented

design practices titled as ‘Pitfalls of object oriented development’ was published in

1995 by Webster [19]. However, in this book, the authors focused only on common

violations of object oriented concepts. Later in 1999, Fowler defined 23 symptoms in

code that indicate degradation in code quality [5] and named those as ‘Code Smells’.

In the same year, Beck et al: published refined definitions of 22 bad smells that are

commonly found in methods or classes.

What causes code smells? According to Zazworka et al, inexperience and

9



bad design practices have highest contribution in code smell’s initiation in software

[20]. Other factors that contribute to introduction of smells are - unplanned software

structure, constant change of requirements, change of developers, shortcut implemen-

tation, etc. [21]. Chatzigeorgiou investigated how code smells are introduced to a

system, and found that most of the smells are initiated when new methods or classes

are added to source code [7]. From these studies, it can be seen why and how smells

are generated, which will help to understand the behavior of code smells.

10



Code smells can not be removed completely. In ideal situation, all smells

should be refactored, and code should be hundred percent smell free. However, in

software development world, the situation it is not always ideal as there exists re-

source limitation, constant pressure of deadline and lack of experienced developers.

To understand this situation, Peter et al: observed developers of seven open-source

systems and found that, developers are aware of bad smells, though they do not often

try to remove those, given the low refactoring activity [3]. It indicates that, in real-life

software development, it is not always feasible to maintain smell free code [3].

Categories of code smell researches. As code smells cannot be completely

eradicated, researchers focused on different aspects of code smells such as taxonomy,

detection, impact, evolution, etc. In the first few studies, researchers tried to define

and classify smells [21, 22] which were followed by researches on smell detection

processes [23, 24]. The more recent studies tend to aim at impact, relation and

evolution of code smells [9, 8, 25]. In the next five sections, these five categories of

code smell researches are described.

2.2 Taxonomy of Smells

Early researches on code smells mostly concentrated on definitions and types of

code smells [21, 22]. After Beck et al: defined 22 code smells in 1999, many re-

searchers grouped smells based on occurrence, influence, refactorability, etc. In 2003,

M Mantyla et al: first published a complete taxonomy of all code smells based on

the design problems those indicate [22]. Wake’s classification, which was published

in 2004 was based on refactorability [26]. Later, in 2006, R Marticorena published an

extended list of code smells divided in six groups [27]. Those six groups are Bloaters,

Object Oriented Abusers, Change Preventers, Dispensables, Couplers and Others.

11



All 22 smells in those groups are described below -

Bloaters: When code segments such as classes and method get extremely large

in size and become highly unmanageable, those are called bloaters. Bloaters residing

in code, increase in size as time elapses (unless anybody makes an effort to eradicate

those) and create giant blocks of code that are very difficult to work with. Smells in

this category are described below.

• Data Clumps A Data Clump is a set of variables that are always used to-

gether. Identical copies of a data clump can be found in many different places

in code. Data clumps are results of poor program structure and ‘copy paste

programming’ [5].

• Large Class or God Class A God Class is a class that has become extremely

large in size, controls a lot of other classes and performs too many tasks. A God

Class is very hard to understand or maintain because of its size and complexity

[5].

• Long Method Long method or brain method is a method that performs too

many duties instead of one. It is large in size and has a high amount of com-

plixity in it [5].

• Long Parameter List A method that takes too many parameters every time

it is called, is said to have Long Parameter List smell. Existence of this smell

indicates existence of data clumps in code.

• Primitive Obsession When primitive data types are used instead of advanced

types or objects, it is called primitive obsession.

O-O Abusers: O-O abusers are code smells which are generated when object
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oriented concepts are violated. Existence of these smells indicate problems in encap-

sulation, inheritance and polymorphism.

• Alternative Classes with Different Interfaces When developers use con-

crete alternative classes instead of using interfaces, it is considered as a smell.

This practice limits the use of inheritance in object oriented code.

• Refused Bequest Sometimes a class is forced to implement a super class just

for ease of implementation. This improper use of inheritance is considered as a

bad smell.

• Switch Statements Long conditional statement indicates that a code is more

structural than object oriented. If conditional switch statements are used in-

stead of object checking, it is considered as a code smell.

• Temporary Field Developers often use temporary fields to stores values of

an object instead of creating a property inside of that object. This practice is

known as Temporary Field smell.

Change Preventers: Code smells that decrease changeability, updatability or

fixability of a code, are grouped in Change Preventers group. Presence of these smell,

makes it tough for developers to perform maintenance tasks.

• Divergent Change If a developer have to perform a series of changes in many

places to implement a change, it means there is severe violation of encapsulation

and this situation is known as divergent change smell.

• Parallel Inheritance Hierarchies When developer implement multiple hier-

archies for single structure, it is considered as a design problem. This situation

is a result of unplanned programming.
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• Shotgun Surgery When developers implement same features in different ways

though out a software, it creates severe maintainability issues. This practice is

known as shortgun surgery smell.

Dispensables: Dispensables are group of those smells, which are unnecessary to

code and should be removed by refactoring.

• Data Class Data classes are containers that hold data of an object but do

not perform any operation on those. This type of object implementation are

violations of object oriented concepts and should be removed.

• Duplicate Code Duplicate code are results of copy paste programming. Code

duplicity creates confusion while performing maintenance tasks, hence should

be removed or unified.

• Lazy Class Lazy classes are classes that holds properties, but rely on other

classes to perform operations on those properties. Instances of these type of

classes are known as bad smells.

• Speculative Generality When code is implemented on unnecessarily granular

level, it is called speculative granularity smell.

Couplers: Smell that initiates unnecessary intimacy between classes and methods

are grouped in Couplers group.

• Feature Envy If a class has excessive intimacy with a method of any other

class, then that method should probably be situated inside the calling class.

This excessively enviousness of a class towards a non local method in known as

feature envy.

• Inappropriate Intimacy If a class excessively uses properties and methods of

another class, those classes are said to have inappropriate intimacy.
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• Message Chains When sending a message from one method to other method

requires to go through other methods, it is called message chain. This situation

is considered as a code smell.

• Middle Man If a class has to use some other class to access a third class, it is

called Middle Man problem. This problem indicates bad design practices.

Not Defined: There exist two smells that cannot be grouped in any category.

Beck et al: grouped these two smells in Not Defined category.

• Comments In object oriented practice, code itself should tell its purpose. Using

comments to describe code is often considered as a smell.

• Incomplete Library Partially implemented library create severe understand-

ability issue for developers, hence it is considered as a code smell.

In this section, it is presented what code smells are and how those are classi-

fied. The next section describes the smell detection mechanisms proposed in previous

researches.

2.3 Detection of Smells

As code smells are unavoidable problems in software development [3], those are needed

to be identified and tracked. Many studies have concentrated on detection of code

smells. The approaches to detect smells can be categorized in three groups. Those

are - metric based approaches, correction based approaches and visual approaches.

However, all three of these approaches have good and bad sides, and none of these

are accepted as the single best way.

Metric based detection approach. Many researchers have proposed different

metric based approaches to detect smells [28]. For example, Travassos et al: [23],
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in 1999, proposed a manual smell detection technique where they calculated code

metrics such as lines of code or variable count, and compared those against certain

threshold values to identify instances of smells. This research was followed by few

metric based heuristic techniques to fully automate smell detection [29, 30, 31]. In

[32, 33], researchers introduced a set of rules for determining thresholds for smell

detection, while Khomh et al: used Bayesian network to determine these threshold

values [34]. However, non of these techniques are accepted as the standard for smell

detection [35]. The most used detection based technique is Decor [36]. It allows user

to adjust threshold values to find out anomalies that she wishes to detect.

Correction based detection approach. In the correction based approach,

smells are identified based on available refactoring opportunities. For example, if

there is an opportunity to extract a method from another method, that means there

exists a long method which should be refactored. The advantage of this approach

is, it identifies smells and the way to refactor those simultaneously. In JDeodorant,

detection and refactoring of God Class [37], Long Method [37], Feature Envy [38] and

Type Checking [39] smells are carried out using this technique. However, the problem

with this technique is there are too many false positive results. For example, in this

approach, even if a small manageable method is refactorable, it is marked as smelly,

which is against the definition of code smells.

Visual based detection approach. As there exist significant amount of con-

fusion about definition and detection of code smells, many researcher opted to leave

the duty of smell detection on manual inspection. Simon et al: visually represented

code metric to aid developers identifying design anomalies [24] while Dhambri et al:

graphically presented bad design practices that can cause code smells [40]. As an

extension to these works, Langelier [41] proposed a semi-automatic approach, where

potential code smells and charecteristics of those are visual presented to the user to
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identify bad smells [41]. Although these approaches are very helpful for identifying

smells, these require manual inspection which is costly and very inconsistent in terms

of accuracy.

In this section, the approaches of smell detection is discussed. The impact of code

smell in software development is discussed in the next section.

2.4 Impact of Smells

Code smells have big influence on the evolution of design structrues [10]. Existence of

smells increases software maintenance cost in terms of developers effort and time [16],

and makes source code error prone [42]. Studies on impact of code smell proved that

classes and methods containing code smell are more change prone and the change

size in files containing code smells are usually larger than changes in smell-free files

[25]. Therefore, it can be said that code smells have big influence in overall software

quality and should be studied in detail.

Smelly code is difficult to maintain. According to the definition, code smells

create numerous maintainability issues in a software such as decreased understand-

ability [5] or decreased changeability [43]. Deligiannis et al: [10], [9] first studied the

impact of code smells (such as Blob classes) on software development and maintenance

activities, and found that smells influence the creation of badly structured code. Du

Bois et al: [44], in 2006, performed a controlled experiment, where they decomposed

God Classes into a number of small classes by performing refactoring and found that

decomposed classes have a significantly higher understandability than the original

God Classes. In 2013, Yamashita et al: observed a host of industrial java projects

and the developers of those projects while they performed various maintenance tasks.

Findings of this investigation show that, most of the maintenance problems are caused
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by single or multiple code smells [45]. Studies, such as [46, 47, 48] inspected change-

ability of large commercial systems, and found that smelly classes are more resilient

to change and thus, difficult to fix or enhance. Therefore, it can be seen from the

literature that, code smells severely reduce maintainability of source code.

Smelly code is more fault-prone. As smelly code segments are less maintain-

able, the likelihood of bug initiation in these segments is very high [49]. In 2004,

Vokavc et al: found that classes that follow good design patterns are less fault prone

than others [42]. Zazworka et al: first investigated the relation between code smells

and fault proneness of code, and found that God Classes are more defectprone than

non-God Classes. Many other researches concentrated on the relation of code smells

and fault proneness such as [49, 50, 51]. Results of these researches complement the

findings of earlier researches [42, 20].

Smelly code is more change-prone. As smelly codes are more fault prone,

developers have to fix those codes more frequently. Bieman et al: [52] analysed five

systems to study change proneness of smelly code segments. They found that, classes

with code smells have higher change frequency. To identify impact of different code

smells, S. Olbrich [53] inspected change frequency and change size in Lucene and

Xerces. They found that, files containing God Class and Shortgun Surgery smells

are more change prone than files which do not contain these smells, and the average

change size is also significantly higher in these files.

2.5 Relationships Between Smells

Complex relations can be identified between existing smells such as co-relation, co-

occurrence, etc. [54, 16]. A brief discussion about researches which concentrated on

code smell relations is presented in this section.
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Co-relation of smells. To understand the co-relation between different code

smells, Lozano et al: performed an empirical research on 95 versions of three open-

source applications (Log4j, Jmol and JFreeChart) [11]. They inspected five smell

relations (Plain Support, Mutual Support, Rejection, Common Refactoring, and In-

clusion) from the seven defined by Pietrzak et al: [8] and four bad smells (God Class,

Long Method, Feature Envy, and Type Checking). From this analysis they discovered

correlations between God Class, Feature Envy and Long Method smells. Feature Envy

and Long Method showed the strongest co-relation while Long Method-God Class,

and Feature Envy-God Class showed mild cor-relation. These findings of this study

are evidence of the co-existence of bad smells.

Co-occurrence of smells. To understand relations among code smells, and the

frequency of those, Fontana et al: investigated 74 open-source system and found that

a significant percentage of smell instances are related to other smell instances [1].

They found that 26% of God Classes use at least a Data Class, while 53% of Shotgun

Surgeries and 70% of Dispersed Couplings are connected to at least one other smell.

This observation confirms the theories that code smells tend to cluster together by

architecturally connecting to other smells. They also inspected co-occurrence of code

smells and found that Long Method has the largest share of co-occurrences (10%).

Since Long Methods are high in size and complexity, if has a relatively higher chance of

being affected by other smells. This study proves that code smells have a tendency to

co-occur in architecturally connected code. However, in this study it is not addressed

that how these relations between smells change with time. Therefore, there remains

a scope for research for understanding the evolution of these co-occurred smells.

Impact of related smells. So far from the literature, it is seen that, code smells

have complex relationship (co-relation and co-occurrence) patterns. Abbes et al: tried

to find out how relations between smells effect the understandability of a system [2].
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They gave developers a set of tasks to perform on smelly code, and analyzed their

performance by using the NASA task load index, the times they spent performing the

tasks, and the accuracy of the solutions. Results showed that the occurrence of one

smell does not significantly decrease the understandability of source code. However,

combination of two smells significantly decreases understandability.

From the literature, it is discovered that code smell co-occur in architecturally

related code segments. It is also seen that a combination of co-occurred smells has

worse manageability. Therefore, to have a better understanding of code smell, co-

occurred code smells should be tracked and the evolution of those should be studied.

In the next section, researches on evolution of code smells are discussed.

2.6 Evolution of Smells

Emergence of Code Smells is a recurring problem is software development which can

not be solved permanently [3]. Smells reside in source code and evolve with time [7].

A large portion of recent studies on code smell concentrate on evolution process and

pattern of smells.

Life cycle of smells. In 2010, Chatzigeorgiou et al: [7] studied the evolution of

Long Method, Feature Envy, and State Checking throughout successive versions of

two open-source systems to understand life cycle of code smells. They found that a

significant percentage of smells are introduced during the addition of new methods to

the code. If no intentional refactoring is performed, these smells reside in the code and

evolve with it over time. While Peters et al: [3], in 2012, showed that even if smells

are refactored, it is highly likely that those will recur in later versions. Therefore, it

can be understood that emergence of code smell is a recurring problem in evolution

of a software, and thus, it should be tracked and observed closely.
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Change behavior. Using 9 releases of Azureus and 13 release of Eclipse, Khomh

et al: [25] investigate the evolution process of code smells to understand the change

behavior of smelly classes. They found empirical evidence that, in the evolution

process, classes with smells tend to change more than classes without smells. In

2011, Zazworka studied evolution of individual smells and found that God Classes

are changed more often [20]. This result of this study complements earlier findings

which suggest - smelly code tends to change more in the evolution process [25].

Pattern of evolution. Olbrich et al: [53] tried to understand evolution pattern

of smells by analysing the historical data of open source systems. After inspecting

Lucene and Xerces for several years they concluded that -

• The total number of code smells increases steadily with time

• The relative number of components having code smells increases over time

• Components with smells is more likely to change

• Change size in smelly components is relative higher than non-smelly compo-

nants.

They also found that, Blob classes and Shotgun Surgery classes have a higher change

frequency than other classes. This is the first study to present evolution patterns

of code smells. However, this study did not inspected the evolution of code smell

relations.

From the literature of code smell evolution, it can be seen that, code smells tend

to reside in code, change frequently and increase in number with time. However,

it is still unknown, how the evolution process of smells effect different relationships

between smells.
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2.7 Summary

Bad design practices that degrade the quality of a software are known as code smells

[5]. There is no accepted standard for automatically detecting code smells, however

there exists some widely used techniques [36, 38, 39, 37] to identify 22 re-known

type of code smells [27]. These code smells significantly decrease maintainability [7]

and changeability [25] of a software. Code smells existing in a software, change and

increase with time [53], and often are related (co-related [8] or co-occurred [1]) to

each other. However, it is not yet studied, in the evolution process of software, how

the relationship between code smell change.
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Chapter 3

Framework for Understanding the

Evolution of Smell Clusters

(FUESC)

A framework named as ‘Framework for Understanding the Evolution of Smell Clusters

(FUESC)’ is developed and proposed in this chapter to extract evolution pattern of

clustered smells. Using this framework, evolutionary behavior of smelly components

can be detected, which will help to achieve a better insight of code smell evolution.

Using ‘FUESC’, multiple consecutive versions of a software can be analyzed and

clustering behavior from those can be extracted. This technique, at first, spots smell

clusters for each version of a software one-by-one. After identifying smell clusters

for all the versions, it observes how clustering behavior changed from one version to

the next. Ultimately it examines the changes in clustering during the releases and

extracts the patterns of evolution.

In this chapter, details of the proposed ‘FUESC’ framework is presented. At

first, a brief overview is given to help the readers understand how this process works.
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After that four steps of this technique, which are - smelly component detection, smell

relation extraction, smell cluster identification and clustering behavior inspection are

described. Finally, a summery of the whole chapter is presented at the end of the

chapter.

3.1 Overview

Code smells residing in software source code are often architecturally inter-connected.

These connected smells create clusters of bad smells which participates in the evolu-

tion process of a software. In this study, the key focus is to understand how relation-

ships between different code smells evolve with time by observing the behaviors of

code smell clusters. Firstly, smelly clusters for different releases of a software project

are identified and their properties are extracted. By comparing these properties, evo-

lution pattern for smell clusters are discovered. A greater understanding of code smell

relationships is achieved by examining the evolution pattern of these smell clusters.

An example situation is presented in Figure 3.1.

In Figure 3.1 (Top-Left) , an example set of classes is shown along with its meth-

ods. Here, the square boxes represent classes and the oval-shaped ones represent

methods. The relationships between a class and a method is shown as an undirected

edge. In Figure 3.1 (Top-Right), detected smelly components are shown using gray

boxes. Then, in Figure 3.1 (Bottom-Left) the relationships between the components

are depicted. Different relationships are illustrated as different types of edges such as

directed edges represent a call from a method to another method, dual edges repre-

sent relationship between two classes. Finally, Figure 3.1 (Bottom-Right) shows the

extracted smelly component clusters.

The main work of this technique is divided into four major steps as shown in Figure
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Figure 3.1: Smelly Cluster Detection Process

3.2. The concern of the first three steps is to spot out and profile smell clusters. After

obtaining the clustering property (such as cluster count, cluster sizes, etc.) for all

versions of a software, the final step is initiated. The focus of this step is to identify

evolution patterns of smell clusters by comparing previously extracted clustering data

for all versions of a software. These four major works performed in this process are

given below -

• Smelly Component Detection To detect smell clusters, first, all the smelly

components must be detected from source code. The purpose of this step is to

detect these smelly components. To do so, all instances of code smell existing

are located. Classes that contain one or more smells are noted as smelly classes.

Similarly, methods containing one or more smells are identified as smelly meth-
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Figure 3.2: Overview of ‘FUESC’

ods. Ultimately, a list of smelly components (smelly methods and smelly classes)

[6] is created.

• Smell Relation Extraction To Detect smelly clusters from from smelly com-

ponents it is required to extract relationships between different smells. There-

fore, in this step, the architectural relationships between different smelly com-

ponents (class-class, class-method, method-method relationships) are collected

from source code.

• Smell Cluster Identification A graph is generated using data from previous

two steps. Every smelly component is inserted in the graph as a vertex and

every relation between these components is added as an edge between those.

After producing this graph, it is searched using graph-search algorithm (BFS)

to find connected clusters of bad smells. The properties of discovered smell
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clusters (such as cluster count, cluster sizes, etc.) are profiled.

• Clustering Behavior Inspection In this step, clustering behaviors recorded

for different versions of a software are analyzed to identify evolution patterns.

So far, the an overview of the process is presented along with an example case.

In the next four sections, four key steps of the ‘FUESC’ framework are described

one-by-one.

3.2 Smelly Component Detection

Figure 3.3: Smell Detection

In this step smelly code components (such as smelly classes and smelly methods)

are detected from source-code (Figure [?]). Later in this study, these detected smelly

components are used to identify clusters of bad smells. In order to do that, the

challenge is to select which smells to target and how those should be detected. In this

section, this decisions are discussed in detail. Before going to smell detection process,

few challenges regarding this process needs to be discussed.
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3.2.1 Decisions Regarding Smell Detection

The key problem in smell detection is, there is no accepted standard for detecting code

smells [35]. For example, when a class gets extremely large in size that it becomes

very difficult for developers to understand, maintain or update, it is called a god class.

However, the exact number of lines required for a class to be a god class is not defined

in literature. Fowler [5] described that a class is a god class when it contains 750 or

more lines of code. Here, the question is if a class is 749 lines long instead of 750,

is there any significant difference in it’s maintainability? Different researchers have

defined different threshold values for detecting code smells. However, none of them

are considered as standard. That is why the challenge is to decide which standard to

follow to detect smells.

Fowler also stated that [5], the best way to detect code smells is using human

intuition. However, for a large project, detecting code smells manually is a highly

time consuming and costly approach. Depending on the expertise and experience of

developer, the output of manual smell detection process might be extremely incon-

sistent.

Although the standards of smell detection is not established yet, there are few

tools which are widely used for smell detection. For example, JSNose [55], DECOR

[36], JDeodorant [39], etc. Any of these tool might be used for smell detection, as the

key concern of this study is not to detect smells, but to analyze relationships between

those. That is why the standards of detection do not carry much significance in this

case.

3.2.2 Smells to Detect

The proposed framework can identify evolution pattern for any smell if smell detection

data is provided to it. The selection of smells depend on the tool which is used with
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this framework. The tool, JDeodorant [39], which is used for this research, currently

supports detection of four smells - God Class, Long Method, Feature Envy and Type

Checking. That it why these four smells where taken into consideration for this

framework.

• God Class (GC) A ‘God Class’ is a class that has grown extremely large is size,

and has become very difficult for a developer to understand, maintain or update.

It controls too many other classes in the system and has grown beyond all logic

to become ‘The Class That Does Everything’. A class is usually considered by

judging the number of code lines it contains or by the amount of methods it

holds.

• Long Method (LM) A ‘Long Method’ is a function or procedure that does

not focus on only one task, rather it performs a series of tasks and works as the

brain of a class. Long methods are detected by analyzing its scope of work and

line count.

• Feature Envy (FE) A class is considered to have ‘Feature Envy’ smell when

it uses methods of another class excessively. This incident indicates that the

structure of the feature envy class or the excessively used method is wrongly de-

signed. ‘Feature Envy’ classes are generally judged by observing its interaction

with methods of other classes.

• Type Checking (TC) When the type of an object is explicitly checked in

software code it is considered as a ‘Type Checking’ smell. This smell indicates

that key concept of object oriented programming such as encapsulation, poly-

morphism and inheritance were not properly followed in the program. These

smells are simply identified by finding statements containing ‘typeOf’, ‘sizeOf’,

‘instanceOf’, etc keywords.
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3.2.3 Smell Detector

JDeodorant [39] is used for detecting instances of code smells in software’s code. This

tool follows a correction based approach to detect of four smells - A) God Class (GC)

B) Long Method (LM) C) Feature Envy (FE) D) Type Checking (TC). In correction

based approach, code smells are spotted by identifying refactoring opportunities. In

simple words, it means if there is a scope to improve a solution, there exists problems

in it.

Using JDeodorant, all instances of these four types of smells are detected in each

version of software. JDeodorant produces one smell file for each type of smell, which

contains a list of all occurrences of that type. As God Class and Feature Envy are

class level smells, smell files for God Class and Feature Envy contain list of smelly

classes. Similarly, as Long Method and Type Checking are method level smells, smell

files for these smells contain list of smelly methods. This files are parsed by a smell

parser to create a single unified list of smelly components, which is used later in

‘FUESC’.

3.2.4 Parsing Smell Data

After the detection of code smells in a software, a list of smelly methods and smelly

classes is generated. These lists are combined to generate a general list of smelly

classes and smelly methods.

First two empty lists of smelly classes and smelly methods is created. For each

smell file, the list of smells is iterated. For each smell, first it is checked whether it is

a method level or a class level smell. If it is a method level smell, and is not already

in the smelly method list, it is added to this list. Same process is followed for class

level smell as shown in Algorithm 1 (line 17-21). This whole process is followed for

each smell type. When all the smelly methods and smelly classes are listed, a unified

30



list of smelly components is found.

Algorithm 1 Parsing Smell Data

1: files: Smell Detector Output Files
2: procedure ParseSmellData(files)
3: smellyMethods← empty
4: smellyClasses← empty
5: size← files[size]
6: for i← 0 to size do
7: smellF ile← files[i]
8: smells← smellF ilegetSmells()
9: smellCount← smells[size]

10: for j ← 0 to smellCount do
11: smell← smells[j]
12: if smell[type] = methodLevel then
13: if smell is not in smellyMethods then
14: smellyMethods:add(smell)
15: end if
16: end if
17: if smell[type] = classLevel then
18: if smell is not in smellyClasses then
19: smellyClasses:add(smell)
20: end if
21: end if
22: end for
23: end for
24: smellyComponents := smellyMethods + smellyClasses
25: return smellyComponents
26: end procedure

After parsing, a list of smelly components is found, which is used as input in the

‘Smell Cluster Detector’ to identify smell clusters. In the next section, the relation

extraction process is described.

3.3 Smell Relation Extraction

To identify smell clusters, it is needed to extract the relationships between differ-

ent smells. This step of the process is concerned with smell relationship extraction
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Figure 3.4: Smelly Components

using the list of smelly components as shown in Figure 3.4. From the background

study, it is seen that Code smells are more likely to stay inter-connected in software

rather than remaining as a single instance. These type of relationships create archi-

tectural connection between smells. Different architectural connections (class-class,

class-method or method-method) can be observed between smelly components of a

software. For instance, it is a highly common scenario that a god classes contain long

methods, or god classes are envious toward methods of other classes. Different types

of architectural relationships between smells are given below.

3.3.1 Relationship Types

As defined in [1], there exists three types of relationships between smelly componants,

which are -

• Contained Relation: Relation between a smelly class, and a smelly methods

contained inside it, is called contained relationship, for example, a Long Method

inside a God Class.

• Used Relation: When a smelly class is used by another smelly class, those two

have used relationship, for example, a god class using a data class.
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• Called Relation: When a smelly method is called by another smelly method,

those to have called relationship, for example, a long method calling another

long method.

Relationships between smells are identified in two steps. The first step is to

analyze the software source code, and extract its architecture. From the extracted

architecture of the software ‘Contained Relations’ can be identified. In the second

step, call graph is generated which is used to identify ‘Used Relations’ and ‘Called

Relations’ between smells.

3.3.2 Architecture Extraction

The purpose of architecture extraction is to find ‘Contained Relations’ between smells.

At first, an Abstract Syntax Tree (AST) is generated from source code of a software.

From the AST, for every smelly classe, contained methods are identified. For all the

identified methods which are smelly, a relation pair is created between the class and

the method as shown in Algorithm 2 (line 16). This relation is added to the list of

contained relation list. Finally a list of contained relations is found.

3.3.3 Call Graph Extraction

The purpose of this step is to find ‘Used Relations’ and ‘Called Relations’ between

smells. At first a call graph, a directed graph that shows the calling relationship

between different subroutines of a program, is generated from source code. By an-

alyzing the call graph it is found that which method calls which method and which

class is used by which class. This information is used to identify ‘Used Relations’ and

‘Called Relations’ between smells. In this step of the work, call graph for the targeted

system is generated from the binary code and the following two types of inter-smell
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Algorithm 2 Contained Relation Extraction Algorithm

1: source: Software source code
2: smells: List of smelly components
3: procedure GetContainedSmellRelations(source; smells)
4: containedRelations← empty
5: AST ← ASTParser(source)
6: classes←AST:getAllClasses()
7: cCount←classes:size
8: for i← 0 to cCount do
9: class← classes[i]

10: if class is in smells then
11: methods←AST:getContainedMethods(class)
12: mCount←methods:size
13: for j ← 0 to mCount do
14: method←methods[j]
15: if method is in smells then
16: relation← r(class to method)
17: containedRelations:add(relation)
18: end if
19: end for
20: end if
21: end for
22: return containedRelations
23: end procedure
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relation is identified - Used Relation and Called Relation. The whole process is given

in Algorithm ??.

Algorithm 3 Used Relation Extraction

1: binary: Binary code generated from source code
2: smells: List of smelly components
3: procedure GetUsedSmellRelations(binary; smells)
4: usedRelations← empty
5: classes← binary:getAllClasses()
6: cCount← classes:size
7: for i← 0 to cCount do
8: class← classes[i]
9: if class is in smells then

10: usedClasses← binary:getUsedClasses(class)
11: ucCount← usedClasses:size
12: for j ← 0 to ucCount do
13: usedClass← usedClasses[j]
14: if usedClass is in smells then
15: relation← r(classtousedClass)
16: usedRelations:add(relation)
17: end if
18: end for
19: end if
20: end for
21: return usedRelations
22: end procedure

By combining the software architecture derived from source code, software call

graph derived from binary code with software smell data generated by third party

smell detector, the relationship between all smells are extracted.

3.4 Smell Cluster Identification

In the Cluster Identification step, smell clusters are identified by creating a graph us-

ing smell data and applying graph-search algorithm in it. Every smelly components

are considered as nodes and every relationships between two components are consid-
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Algorithm 4 Called Relation Extraction

1: binary: Binary code generated from source code
2: smells: List of smelly components
3: procedure GetCalledSmellRelations(binary; smells)
4: calledRelations← empty
5: classes←binary:getAllClasses()
6: cCount←classes:size
7: for i← 0 to cCount do
8: class← classes[i]
9: methods←binary:getContainedMethods(class)

10: mCount←methods:size
11: for j ← 0 to mCount do
12: method←methods[j]
13: if method is in smells then
14: calledMethods←binary:getCalledMethods(method)
15: cmCount←calledMethods:size
16: for k ← 0 to cmCount do
17: calledMethod←calledMethods[k]
18: if calledMethod is in smells then
19: relation← r(methodtocalledMethod)
20: calledRelations:add(relation)
21: end if
22: end for
23: end if
24: end for
25: end for
26: return calledRelations
27: end procedure
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Figure 3.5: Relation between Components

ered as edges to generate a graph. In this graph, different types of edges are used to

show class-class, class-method, method-method relationships as shown in Figure 3.5.

After the graph generation, clusters are identified using graph search algorithms

such as Breath-First-Search (BFS), Depth-First-Search (DFS). Finally, various char-

acteristics of smells such as clustering behavior, connectivity, change of cluster size,

are extracted by analysing the clusters.

Using this process, smell clusters are identified for various versions of software.

Then these clusters are analyzed to identify the evolution of the code smell relation-

ships.

3.4.1 Graph Generation

After detection of code smells and their architectural connection, a graph is generated

for cluster detection. Every smelly component is inserted in the graph as a node.

After that, an edge is drawn between every pair of architecturally connected smells.

This process stops when every connection between smells is inserted in the graph.

Multiple connection between two nodes is also represented by single edge as shown

in Algorithm 5 (line 14-21). After this process, a graph of smelly components for a
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specific version of a software is found.

Algorithm 5 Graph Generation Algorithm

1: smells: List of smelly components
2: relations: List of relations between smelly components
3: procedure GenerateGraph(smells; relations)
4: empty graph G = (V, E)
5: list of vertexes V ← empty
6: list of edges E ← empty
7: sCount←smells:size
8: for i← 0 to sCount do
9: smell← smells[i]

10: V:add(smell)
11: end for
12: rCount←relations:size
13: for j ← 0 to rCount do
14: relation from u to v, r(u; v)←relations[j]
15: if u is in V then
16: if v is in V then
17: if r(u; v) is not in E then
18: E:add(r(u; v))
19: end if
20: end if
21: end if
22: end for
23: return G
24: end procedure

Here, smells is the list of smelly components and relations is the architectural

relation of the whole system.

3.4.2 Cluster Detection

When the graph is ready, graph search algorithm is used to identify connected clusters

of code smells. Breath-First-Search (BFS) is used here for searching graph. Instead of

BFS, DFS termed as Depth-First-Search could also be used, which would produce the

same results. For each node of the graph, BFS is performed to gather all the nodes

which are reachable from it. All the reachable nodes are removed from the original
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graph. This set of reachable nodes is a cluster of smells. This cluster is added to the

smell cluster list as shown in Algorithm 6.. This process is repeated until the original

graph is empty. By that time the list of smell clusters is full with all the cluster.

3.5 Clustering Behavior Inspection

Finally, after detecting all the smell clusters, the clustering behavior for that spe-

cific version is saved to compare with other versions of the software. The following

properties are calculated for this research.

• GC Count Total number of God Class smells

• LM Count Total number of Long Method smells

• FE Count Total number of Feature Envy smells

• TC Count Total number of Type Checking smells

• Smelly Class Count Total number of smelly classes

• Smelly Method Count Total number of smelly methods

• Classes Containing Smells Total number of classes that either is smelly or

contains at least one smelly method

• Used Relation Count Total number of relations between two smelly classes

• Contained Relation Count Total number of relations between a smelly class

and a smelly method

• Called Relation Count Total number relations between two smelly methods

• Vertex Count Total number of smelly nodes in the graph
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Algorithm 6 Cluster Detection Algorithm

1: smells: List of smelly components
2: relations: List of relations between smelly components
3: procedure DetectClusters(smells; relations)
4: list of vertexes V ← smells
5: list of edges E ← relations
6: clusters = list of cluster c(nodes; edges)
7: clusters← empty
8: vCount←V:size
9: for i← 0 to vCount do

10: smell← smells[i]
11: connectedNodes← getConnectedNodes(smell; relations)
12: clusters:add(connectedNodes)
13: V:remove(connectedNodes)
14: end for
15: return clusters
16: end procedure
17: procedure GetConnectedNodes(smells; relations)
18: list of vertexes V ← smells
19: list of edges E ← relations
20: cluster with smells nodes and relations edges
21: cluster ← empty
22: vCount←V:size
23: for i← 0 to vCount do
24: smell← smells[i]
25: rCount←relations:size
26: nodes:add(u)
27: for j ← 0 to rCount do
28: relation from u to v, r(u; v)←relations[j]
29: if u is in V then
30: if v is in V then
31: if r(u; v) is in E then
32: nodes:add(v)
33: edges:add(r(u; v))
34: end if
35: end if
36: end if
37: end for
38: end for
39: return cluster = cluster(nodes; edges)
40: end procedure
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• Cluster Count Total number of smell clusters in the graph

• Cluster Sizes List of cluster sizes existing in the graph

• Largest Cluster Size Size of the largest cluster

• Single Node Count Total number of Single-Node clusters in the graph

• Nodes in Small Clusters Vertex Count - Largest Cluster Size - Single Node

Count

• List of Clusters A list of all clusters with all nodes in those

3.6 Summary

A framework ‘FUESC’ is proposed in this chapter that analyses software source code

to identify evolution patterns of smell clusters. The techniques used for this process

are illustrated in this chapter along with the reasons why those were selected. Four key

sub-tasks is performed in this approach which are - 1) Smelly Component Detection,

2) Smell Relation Extraction, 3) Smell Cluster Identification and finally 4) Clustering

Behavior Inspection. Task-1, task-2 and tast-3 extracts smell clusters from source

code step-by-step. Task-4 consists of manual inspection of the results obtained by

previous tasks. In the next chapter, few open-source software will be examined using

this methodology to understand the evolution pattern of code smells residing in those.
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Chapter 4

Smell Cluster Inspection Tool

(SCIT)

Smell Cluster Inspection Tool (SCIT) is developed to �nd and inspect clusters of code

smells that exist in a java project. This tool implements the FUESC framework that

is proposed in Chapter 3. The task of smell cluster detection and pattern discovery

is performed by four core units of this tool which are - smelly component detector,

smell relation extractor, smell relation identi�er and cluster behavior inspector. As

an input this tool takes lists of instances of code smells and a jar �le of the project

and generates a `clustering report' text �le as an output. This output contains all

the clustering behavior (such as evolution pattern of cluster sizes, smell initiation and

elimination rates in clusters etc.) calculated by it. Using this tool, a case study is

performed on 25 versions of three open-source java projects to understand evolution of

smell clusters. The tool discovered that, number of smelly component and relationship

between those increases as a software grows old. It also found that as time passes,

new clusters of smells are introduced in the system and sizes of those increase steadily.

In the previous chapter, a framework called FUESC is proposed for understanding
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clustering behavior of code smells. In this chapter, a tool SCIT, which is developed

based on that framework will be discussed. In the following sections the architecture,

input output and demonstration of SCIT is described. After that, detail about the

performed case study is presented where the data sets, experiment setup, and results

are discussed.

4.1 Smell Cluster Inspection Tool

SCIT is a tool that analyzes di�erent versions of a software to extract change behavior

of smell clusters. By examining this change behavior a deeper insight about the

evolution of code smells can be achieved. SCIT is implemented in JAVA and currently

operates on JAVA source code. It analyzes the smell data for di�erent versions and

creates a report after analyzing those. This report contains information about cluster

sizes, di�erent cluster's evolution pattern etc.

In the following subsections, the architecture of SCIT is described followed by a

discussion about its input and output. After that a demonstration of the tool is given

in a seperate subsection.

4.1.1 Architecture of SCIT

SCIT is a tool combining four di�erent units - smelly component detector, smell

relation extractor, smell relation identi�er and cluster behavior inspector. The tasks

performed by these units are described below.

� Smelly Component Detector: The smelly component detector detects in-

dividual smelly methods and smelly classes by analyzing smell data from third

party smell detectors and generates a uni�ed list of smelly components. There

is a parser module inside this unit which parses third party data to create on
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Figure 4.1: Architercture of SCIT

memory list of smells. For this study, a parser for JDeodorant data is built

which parses four output �les of JDeodorant which are lists of God Classes,

Feature Envies, Long Methods and Type Checkings, and creates a list of smelly

components. This list is used in the Smell Relation Extractor unit and Smell

Cluster Identi�er unit. For this study, only JDeodorant parser is created. To

use data from other smell detectors (such as Ptdej, or DECOR), another new

parser module can be plugged inside this unit.

� Smell Relation Extractor: This element of this toolkit has two duties, those

are, extracting architecture from bytecode to �nd `contained relation' between

code smells, and �nding `used relation' and `called relation' by analyzing call

graph. The �nal output of this unit is a list of pairs of smelly components

denoting the architectural connections between smells.
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� Smell Cluster Identi�er: This unit is concerned with graph generations from

smell data and architecture data. It �nds clusters of code smells in these graphs

and pro�les those as a set of smelly components.

� Clustering Behavior Inspector: The �nal part of this toolkit is a cluster

analyzer. This analyzer compares clustering behavior (such as cluster growth,

size, new smell initiation and elimination rate etc.) of di�erent releases to

identify pattern of evolution. This report is printed in a text �le as the �nal

output of the tool.

4.1.2 Input and Output of SCIT

SCIT takes lists of code smells and a jar �le as input for each version of a software

and generates a cluster evolution report text �le as output. Instead of taking these

�les one by one it takes a path to all �les and searches that path to �nd versions

that can be analyzed. If it can �nd four list of smells (God class, Feature Envy, Long

Method and Type Checking) and a jar �le for a version, it considers the version as

analyzable. SCIT shows the user the list of analyzable versions from which user can

choose the versions that he wish to inspect shown in Figure 4.2.

SCIT produces one analysis �le for each version of the project in the given path.

This �le contains clustering report on that speci�c version only. One cluster evolution

report is generated combining the data of all versions and saved as text �le in the

given path. This �le can be opened in CSV editor for a better presentation of the

analysis.
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Figure 4.2: User Interface of SCIT

4.1.3 Demonstration of SCIT

In Figure 4.2, the user interface of SCIT is presented. The UI consists of one input

�eld and three buttons. The input �eld takes a path to all �les. At �rst the user have

to paste a path to all �les and press the button `Find Versions to Analyze'. In the

`Found Versions' box in UI (Figure 4.2), a list of found analyzable versions is shown.

Now, the user have to select all the versions he wants to inspect as shown in Figure

4.3. Here, the order of selection is very important because SCIT cannot automatically
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Figure 4.3: Demo: SCIT

understand which version was released after which. According to the user's selection

order, SCIT shows an ordered list of versions in right hand side panel. If the user

wants to re-select versions, she can press the clear button to start the process from

beginning. If the ordering is correct, the user can press the `Analyze' button to start

the analysis. When the analysis is �nished, the output �le is saved in the same path

that was given previously as input.
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4.2 Dataset

The analysis was performed on 3 popular open source java libraries - JUnit [56],

Apache Commons-lang [57] and mockito [58]. The selection of this projects were based

on popularity and compilability of this libraries. The projects that were analyzed are

described below -

� JUnit: JUnit is an open-source unit testing library in java. It is the most

popular java library among open-source github repositories. According to a

research [59] on github projects, more than 64% of all open-source java projects

use JUnit for automated unit tests. The JUnit development started in 2004.

Since then, 10 stable versions (from 4.5 to 4.12) of the library have been released.

The fact that, JUnit has a signi�cantly long history of development, makes it a

good choice for this study.

� Apache Common-lang: Apache Commons-lang is an open-source utility

library developed for java projects. It provides a host of utilities to support

java-lang, for example, basic numeric and string manipulation methods. It is

a highly popular library in java development. Over 12% of all open-source

java projects in github use this utility library. The �rst release (version 1) of

this library came in 2002. since then 4 other stable releases (version 3.0 , 3.1,

3.2, 3.3, 3.4 and 3.5) of it have been published. All the releases of the library

are easily compilable and the project structure did not change much between

di�erent versions. These factors make apache Commons-lang a good selection

for this study.

� Mockito: Mockito is the most popular java mocking library for writing clean

and easily readable test codes. It is used by more than 30,000 open source java

projects hosted in github. According to [59], 10.72% of git-hub open-source
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projects use mockito library. The library was �rst written in 2008. Since then

96 releases of it was released. 14 of these versions were published as stable

releases. 10 consecutive releases of this project from 1.5 to 1.9.0, which were

similar in project structure, are studied in this investigation.

4.3 Environmental Setup

The case study was performed in the following setup -

� Machine: Intel core i7 second generation processor with clock speed of 2.93

GHz, 4GB of RAM.

� Operating System: Microsoft Windows 8 64bit operating system.

� Java Virtual Machine: Java runtime environment 7.

� Smell Detector: JDeodorant 5.0.42

� Bytecode Generator: Bytecode generated by Eclipes, Version: Mars.1 Re-

lease (4.5.1)

� Source Code: source code of di�erent versions of JUnit can be found in

Github under junit-team/junit4 [60]. Under mockit0/mockito source codes for

Mockito can found in Github [61]. Commons-lang is hosted in Github under

apache/Commons-lang [62].

� SCIT: The source code of the developed tool `Smell Cluster Inspection Toolkit'

is hosted in Dropbox [63].

� Input Data: JDeodorant's output is used as one of the inputs in the case

study. These data can be found in the replication package [63].
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4.4 Results of Case Study

As the tool performs the analysis in four di�erent components, the results come in

four stages. At the �rst stage, the output is a list of smelly components (smelly

methods and smelly classes). Number of relations (such as contained, used and called

relations) between smelly components is found in the second stage. At the third stage

of result collection, a list of code smell clusters is gathered. In the fourth and �nal

stage, evolutionary behaviors of smell cluster are collected as �nal output.

In the following four sections, the raw results for each of these four stages will

be presented one by one. In the next chapter, it will be discussed how these results

answer the research questions of this study.

Figure 4.4: Smelly Componants in JUnit
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4.4.1 Results: Smelly Component Detection

In the �rst phase of the case study, smelly method list and smelly class list for JUnit,

Mockito and Commons-lang is collected. To justify the validity of the dataset, it

is important to check whether the smells exhibit the behaviors previously stated by

other researchers. Alexander Chatzigeorgiou et al showed that, number of code smells

in a software increases steadily with time [7]. Collected smelly clusters are inspected

to see whether these follow this theory of code smell evolution and it is found that

all three of the subjects exhibit this behavior.

As shown in Figure 4.4, the number of smelly methods residing in JUnit increased

from 52 in the �rst release, release-4.5, to 74 in the �nal release, release-4.12. During

these ten releases, smelly class count reached 55 from the initial value of 32. The

overall increase of smelly components is 45 at an increase rate of 5 components per

release which is 5% of growth per release.

As shown in Figure 4.5, the number of smelly methods residing in Mockito in-

creased from 16 in the �rst release, release-1.5, to 59 in the �nal release, release-1.9.0.

During these ten releases, smelly class count reached 30 from the initial value of 9.

The overall increase of smelly components is 64 at an increase rate of 7.11 components

per release which is 15% of growth per release.

As shown in Figure 4.6, the number of smelly methods residing in Commons-lang

increased from 34 in the �rst release, release-3.0, to 104 in the �nal release, release-

3.4. During these �ve releases, smelly class count reached 23 from the initial value

of 18. The overall increase of smelly components is 75 at an increase rate of 18.75

components per release which is 25% of growth per release.

51



Figure 4.5: Smelly Componants in Mockito

4.4.2 Results: Smell Relation Extraction

In the second stage of the case study, the relation between di�erent smelly components

are found. This data is very important as it shows how the connectivity between

di�erent instances of code smells change overs time. By analyzing this data, a deeper

understanding about the relationship of code smells can be found. From the results

of the case study, it is observed that, for all three subjects of the study, number of

relations between code smells increases as software grows old.

In Figure 4.7, the number of smell relations for di�erent versions of JUnit, Mock-

ito and Commons-lang is presented. This relationship data was extracted from 25

di�erent release versions. From this �gure, it can be seen that after ten releases of
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Figure 4.6: Smelly Componants in Commons-lang

JUnit and Mockito, relation count reached 147 from 80, and 81 from 9 respectively.

While after �ve releases of Commons-lang, the relationship count increased from 15

to 90.

4.4.3 Results: Smell Cluster Identi�cation

At this point the clusters of code smells existing in targeted versions of software are

found. By comparing clusters from di�erent versions, it can discovered how smell

clusters change over time. The found clusters in this step can be divided into two

categories (such as - single-node clusters, multiple-node clusters) based on how many

nodes those contain. A single-node cluster in this graph, is a smelly component that

does not have any architectural connection with any other smelly components. While
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Figure 4.7: Smell Relations for Di�erent Open-Source Software

a multiple-node cluster at least holds two smelly components which are architecturally

connected to each other. The found data for all three subjects of this study show

that as time passes, number of smell clusters in a software grows steadily.

Figure 4.8: Graph Properties of JUnit

Figure 4.8 shows the detail of graphs generated for each version of JUnit. SCIT

found 29 clusters of code smells in JUnit release-4.5. Among these clusters, 22 are

single-node and remaining 7 are multiple-node clusters. After ten releases in JUnit-

4.12, the cluster count reached 35. Only 6 of the clusters found in this version are

actual multiple-node clusters. SCIT also found that, in the �nal version of JUnit,
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100 out of the 129 smelly components were contained inside multiple-node clusters

(Figure 4.8).

Figure 4.9: Graph Properties of Mockito

Figure 4.9 shows the detail of graphs generated for each version of Mockito. SCIT

found 19 clusters of code smells in Mockito release-1.5. Among these clusters, 17 are

single-node and only 2 are multiple-node clusters. After ten releases in Mockito-1.9.0,

the cluster count reached 26. Only 8 of the clusters found in this version are actual

multiple-node clusters. SCIT also found that, in the �nal version of Mockito, 71

out of the 89 smelly components were contained inside multiple-node clusters (Figure

4.9).

Figure 4.10: Graph Properties of Commons-lang

Figure 4.10 shows the detail of graphs generated for each version of Commons-

lang. SCIT found 37 clusters of code smells in Commons-lang release-3.0. Among

these clusters, 29 are single-node and remaining 8 are multiple-node clusters. After

�ve releases in Commons-lang-3.4, the cluster count reached 56. Only 14 of the

clusters found in this version are actual multiple-node clusters. SCIT also found
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that, in the �nal version of Commons-lang, 85 out of the 127 smelly components were

contained inside multiple-node clusters (Figure 4.10).

4.4.4 Results: Clustering Behavior Inspection

In this �nal stage of the case study, SKIT provides additional detail about clustering

behavior by comparing results of di�erent versions. For example, evolution of cluster

size, smell initiation and elimination rate in di�erent cluster, growth rate of di�erent

clusters, are provided in the �nal inspection report. By examining this report, a

greater understanding about code smells evolution can be achieved.

Figure 4.11: Cluster Sizes in JUnit

In Figure 4.11, Evolution of di�erent clusters in JUnit is presented in terms of

cluster size. Existence of total 7 smelly clusters are identi�ed in the source code of

JUnit. Size of most of these clusters vary from 2 to 7. An extremely large cluster is

identi�ed in all ten versions of JUnit. The size of this cluster is between 43 to 87.

In Figure 4.12, Evolution of di�erent clusters in Mockito is presented in terms of

cluster size. Existence of total 8 smelly clusters are identi�ed in the source code of
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Figure 4.12: Cluster Sizes in Mockito

Mockito. Size of most of these cluster vary from 2 to 5. An extremely large cluster is

spotted in all ten versions of Mockito. The size of this cluster is initially 6, however

it grew to 52 in the �nal release.

Figure 4.13: Cluster Sizes in Commons-lang

In Figure 4.13, Evolution of di�erent clusters in Commons-lang is presented in

terms of cluster size. Existence of total 8 smelly clusters are identi�ed in the source
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code of Commons-lang. Size of most of these cluster vary from 2 to 6 nodes. An

extremely large cluster is spotted during this study on Commons-lang. The size of

this cluster was initially 5, however it eventually grew to 50 in the �nal release.

4.5 Summery

A tool SCIT was developed that implements the framework FUESC, proposed in

the previous chapter, to perform an investigation on evolution of code smell clusters

in open-source software. SCIT analyzed 25 release versions of JUnit, Mockito and

Apache Commons-lang during this case study. Smell cluster's behavioral and evolu-

tionary properties were extracted from these open source software. It is found that

number of smell clusters increases steadily with time. However this increase rate is

not equal for all type of clusters. These behaviors will be further investigated in the

next chapter to �nd answers for the research questions of this study.
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Chapter 5

Result Analysis

In this chapter, �ndings of the performed case study are discussed to answer the

research questions of this study. From the investigation, empirical evidence has been

found that, smelly components get more tightly architecturally connected as time

passes. It is also observed that, number of individual smell clusters in software,

increases from one version to other. Finally, it is discovered that, code smells tend

to create a giant `Mega Cluster' of smells which is very large in size and di�cult to

manage.

Earlier in this thesis, three research question are proposed for investigation. Those

questions are -

� RQ1: How does the architectural connectivity of smelly components evolve

with time?

� RQ2: How does the existence of code smell clusters change over time?

� RQ3: Do all the smell clusters show similar pattern of evolution?

A framework named FUESC is proposed in Chapter 3 to analyze evolution pat-

terns of code smells. Based on this framework, a smell cluster inspection tool SCIT
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was developed to study clustering behavior of real-life software. SKCT was used to

perform a case study on 25 versions of three popular java libraries (which are JU-

nit, Mockito and Commons-lang). The results of the above mentioned case study

is inspected in this chapter to answer the research questions. The following three

subsections will focus on answering these research questions one by one.

5.1 RQ1: Total number of architectural connec-

tions between smells increases steadily with

time

How does the architectural connectivity of smelly components evolve with

time?

The �rst goal of this investigation is to understand how architectural connectivity

of code smells evolve in a software. After analyzing the results of the case study, it

is discovered that relationship between code smells increases as a software grows old.

The relationship count raises in a steady pace from one version to the next. All three

subjects of this case study (which are JUnit, Mockito and Commons-lang) exhibited

this behavior.

For JUnit, the smell relation count in release r4.5 was 80 which grew to 147 in the

�nal release r4.12. An average increase of 7.44 (Figure 5.1) relations per release was

discovered. In each new release the relation count is increased by 7% (Figure 5.2)

on an average. Mockito and Commons-lang also showed similar patterns of change

in relation count. This count only grew with time in both of this projects. Average

increase for Mockito is 8 relations per release, where it is 18.75 for Commons-lang as

shown in Figure 5.1. The growth rate is calculated at 28% and 57% respectively for
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Figure 5.1: Average Increase

Figure 5.2: Growth Rate

Figure 5.3: Increase of architectural relations in di�erent software
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Figure 5.4: Number of architectural relations in di�erent versions of JUnit

Mockito and Commons-lang (Figure 5.2).

As discussed in chapter 2, there are three types of code smell relations such as

Contained Relation, Used Relation and Called Relation. So far it has been shown

how the total number of relationship changed with time. Next it will be shown how

di�erent type of relationship count evolves as time passes.

As shown in Figure 5.4, Called Relation count of JUnit4.5 is 7 which grew to 9

in JUnit4.12 after 10 releases. Number of Used Relation raised to 85 from 43 in this

period, where Contained Relationship count reached 53 from 30. All three kinds of

relationship increased during these releases as the total relation count increased to

147 from 80.

As shown in Figure 5.5, Called Relation count of Mockito1.5 is 3 which grew to

14 in Mockito1.9.0 after 10 releases. Number of Used Relation raised to 36 from 3 in

this period, where Contained Relationship count reached 31 from 3. All three kinds
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Figure 5.5: Number of architectural relations in di�erent versions of Mockito

of relationship increased during these releases as the total relation count reached 81

from 9.

As shown in Figure 5.6, Called Relation count of Commons-lang3.0 is 5 which

grew to 25 in Commons-lang3.4 after 5 releases. Number of Used Relation raised to

7 from 19 in this period, where Contained Relationship count reached 46 from 3. All

three kinds of relationship increased during these releases as the total relation count

raised to 90 from 15.

Now, this behavior of software source code indicates that code smells residing in

a software tends to be inter-connected. As time passes interaction between smelly

classes and smelly methods increase in a steady manner. It means, if a code segment

infected by code smells is not refactored, there is a good chance that it will connect

to other smelly components in future releases of the software and eventually make it

even more unmanageable.
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Figure 5.6: Number of architectural relations in di�erent versions of Commons-lang

5.1.1 `Contained Relationship' count increases steadily with

time

From Figure 5.4, 5.5 and 5.6, it can be observed that the total number of Contained

Relationship between smells raises with time. To understand this behavior, average

increase and growth rate were calculated for JUnit, Mockito and Commons-lang. It

is found that Contained Relation count for JUnit increase at a steady pace of 2.56

relations per release. The increment for Mockito and connons-lang is calculated at

3.11 and 10.75 respectively (Figure 5.7). Commons-lang exhibits the highest growth

rate of 98% per release as shown in Figure 5.8.
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Figure 5.7: Average increase in Contained Relation count

Figure 5.8: Growth rate of Contained Relationship
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Figure 5.9: Average increase in Used Relation count

Figure 5.10: Growth rate of Used Relationship

66



Figure 5.11: Average increase in Called Relation count

5.1.2 `Used Relationship' count increases steadily with time

From Figure 5.4, 5.5 and 5.6, it can be observed that the total number of Used

Relationship between smells raises with time. To understand this behavior, average

increase and growth rate were calculated for JUnit, Mockito and Commons-lang. It

is found that Used Relation count for JUnit increase at a steady pace of 4.67 relations

per release. The increment for Mockito and connons-lang is calculated at 3.67 and 3

respectively (Figure 5.9). Mockito exhibits the highest growth rate of 32% per release

as shown in Figure 5.10.

5.1.3 `Called Relationship' count increases steadily with time

From Figure 5.4, 5.5 and 5.6, it can be observed that the total number of Called

Relationship between smells raises with time. To understand this behavior, average

increase and growth rate were calculated for JUnit, Mockito and Commons-lang. It
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Figure 5.12: Growth rate of Called Relationship

is found that Used Relation count for JUnit increase at a steady pace of 0.22 relations

per release. The increment for Mockito and Commons-lang is calculated at 1.22 and

5 respectively (Figure 5.11). Commons-lang exhibits the highest growth rate of 50%

per release as shown in Figure 5.12.

5.2 RQ2: Total number of code smell cluster in a

software increases steadily with time

How does the existence of code smell clusters change over time?

The second research goal of this investigation is to understand how the existence

of di�erent clusters change with time. After analyzing the results of the case study,

it is discovered that the number of code smell clusters existing in the source code

increases as the software grows older. It is also found that the cluster count increases

from one version to the next in a steady pace. All three subjects of this case study
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Figure 5.13: Cluster count for di�erent releases of open-source software

Figure 5.14: Cluster Count Growth Rate

(which are JUnit, Mockito and Commons-lang) exhibites this behavior.

For JUnit, the cluster count in release r4.5 was 29 which grew to 35 in the �nal

release r4.12 as shown in Table 5.13. An average increase of 0.67 clusters per release

was discovered. In each new release the cluster count is increased by 2% on an average.

Mockito and Commons-lang also showed similar patterns of change in cluster count.

This count only grew with time in both of this projects. Average increment for

Mockito is 0.78 clusters per release, where it is 4.75 for Commons-lang. The growth

rate is calculated at 4% and 11% respectively for Mockito and Commons-lang (Figure

5.14).
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Now, this behavior of software source code indicates that code smells residing in

a software tends to create clusters rather than staying as isolated instances. As time

passes interaction between smelly classes and smelly methods increase in a steady

manner and increase the number of smell cluster. Which means, if a code segment

infected by code smells is not refactored, there is a good chance that it will connect

to other smelly components in future releases of the software and eventually larger

clusters of bad smells.

5.3 RQ3: Smelly Components Tend to Create a

`Mega Cluster' of Bad Smells

All the smelly clusters in source code do not exhibit the same patterns of evolution.

Every single cluster's size in JUnit is presented in Figure 5.15. Here, it can be seen

that a large cluster contains the lion's share of all smelly components. The percentage

of the smells it holds is very consistent and always over 70%. Its size grew from 43

(release-4.5) to 71 (release-4.12) in ten releases. While other clusters are signi�cantly

smaller in size with the average size of 2.35 nodes.

Similar clustering behavior is observed in Mockito as well. Every single cluster's

size in Mockito is presented in Figure 5.16. Here, it can be seen that a large cluster

contains maximum number of smelly components. The percentage of the smells it

holds is very consistent and always over 60%. Its size grew from just 6 (release-1.5)

to 52 (release-1.9.0) in ten releases. While other clusters are signi�cantly smaller in

size with the average size of 1.89 nodes.

Similar clustering behavior is seen in Commons-lang as well. Every single cluster's

size in Commons-lang is presented in Figure 5.17. Here, it can be seen that a large

cluster contains maximum number of smelly components. The percentage of the
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Figure 5.15: Evolution of smell clusters in JUnit
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Figure 5.16: Evolution of smell clusters in Mockito
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Figure 5.17: Evolution of smell clusters in Commons-lang

smells it holds is grew steadily to over 60%. Its size grew from just 6 (release-3.0) to

50 (release-3.4) in �ve releases. While other clusters are signi�cantly smaller in size

with the average size of 2.30 nodes.

5.3.1 Smells tend to create a `Mega Cluster' over time

Existence of a giant cluster of code smells is found in this study. This cluster is

identi�ed as `Mega Cluster'. The `Mega Cluster' has few unique behaviors in terms
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Figure 5.18: Initiation of code smells in di�erent clusters of JUnit

of size and growth which separate it from other clusters. The mega cluster found in

JUnit has a growth rate of 8% while no other cluster in this project have a positive

growth rate. In mockito, the growth rate is calculated at 27%. the only other growth

rate is 11%, which is of a cluster that grew from 2 to 5 nodes in ten releases. In

Commons-lang, the growth rate of the mega cluster is staggering 78%. A few other

clusters have 11% growth rate, all of those having less than 7 nodes. The average

percentage of nodes contained by `Mega Clusters' is also very distinct. For JUnit

this rate is 82.23%. While it is 71.62% and 54.70% for Mockito and Commons-lang

respectively. This �gures con�rm that, the `Mega Cluster' exhibits a di�erent pattern

of evolution from all other clusters.

5.3.2 Code smell initiation rate is relatively high in `Mega

Clusters'

To further examine the behavior of `Mega Clusters' the code smell initiation rate in

di�erent clusters is analyzed. It is found in all three systems that, the initiation rate

of code smells is higher in `Mega Clusters'.

In Table 5.18, all the instances of code smell initiation in JUnit is presented. These

instances are divided in three categories, instances in single-node cluster, instances in

the Mega Cluster and instances in all other small clusters. It can be seen that, the

number of instances in the largest cluster is highest with 38 instances. Initiation of

10 new instances at a time was registered in release-4.6.

In Table 5.20, all the instances of code smell initiation in Commons-lang is pre-
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Figure 5.19: Initiation of code smells in di�erent clusters of Mockito

Figure 5.20: Initiation of code smells in di�erent clusters of Commons-lang

sented in three categories, instances in single-node cluster, instances in the Mega

Cluster and instances in all other small clusters. It can be seen that, the number

of instances in the largest cluster is highest with 42 instances. Initiation of 21 new

instances at a time was registered in release-1.8.0.

In Table 5.19, all the instances of code smell initiation in Mockito is presented in

three categories, instances in single-node cluster, instances in the Mega Cluster and

instances in all other small clusters. It can be seen that, the number of instances in

the largest cluster is highest with 36 instances. Initiation of 17 new instances at a

time was registered in release-3.1 and release-3.4.

Similar behavior is observed in each of the software in terms of smell initiation. A

comparison of smell initiation between JUnit, Mockito and Commons-lang is shown

in Table 5.21. In all three of these software, the highest number of smells are initiated

in the Mega Cluster with percentage varying between 42-49%.

Figure 5.21: Initiation of code smells in di�erent software
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Figure 5.22: Elimination of code smells in di�erent clusters of JUnit

Figure 5.23: Elimination of code smells in di�erent clusters of Mockito

5.3.3 Code smell elimination rate is relatively low in `Mega

Clusters'

In Table 5.22, all the instances of code smell elimination in JUnit is presented. These

instances are divided in three categories, instances in single-node cluster, instances in

the Mega Cluster and instances in all other small clusters. It can be seen that, the

number of instances in the largest cluster is lowest with 7 instances. Elimination of

3 smells at a time was registered in release-4.8.1.

In Table 5.24, all the instances of code smell elimination in Commons-lang is

presented in three categories, instances in single-node cluster, instances in the Mega

Cluster and instances in all other small clusters. It can be seen that, the number of

instances in the largest cluster is lowest with just 8 instances. Elimination of 4 smells

at a time was registered in release-1.8.3.

In Table 5.23, all the instances of code smell elimination in Mockito is presented

in three categories, instances in single-node cluster, instances in the Mega Cluster

and instances in all other small clusters. It can be seen that, the number of instances

in the largest cluster is lowest with just 1 instance. This instance was registered in

release-3.3.

Similar behavior is observed in each of the software in terms of smell elimination.
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Figure 5.24: Elimination of code smells in di�erent clusters of Commons-lang

Figure 5.25: Elimination of code smells in di�erent software

A comparison of smell elimination between JUnit, Mockito and Commons-lang is

shown in Table 5.25. In all three of these software, the lowest number of smells are

eliminated in the Mega Cluster with percentage varying between 22-25% which is

almost half the rate of smell initiation (which is 42-49%).

5.4 Summery

After analyzing the results, decisive answers can be found for the research questions

that are proposed earlier in this study. It is found that the number of relations

between code smells in JUnit, Mockito and Commons-lang increased steadily with

time with the growth rate of 7%, 28% and 57% respectively. It is also seen that the

cluster count for these software also increased at a steady pace which is 2% for JUnit,

4% for Mockito and 11% for Commons-lang. Finally, the existence of a giant cluster

is found in all three of these software. These giant cluster hold more than 50% of all

the smelly components in these software and have a relatively higher growth rate than

other clusters. These clusters are named de�ne as `Mega Clusters'. The percentage of

new smell initiation in these Mega Clusters vary from 42-49%, while the percentage

of smell elimination vary between 22-25%. So the overall result indicated that, if
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code smells are not refactored in code, these will architecturally connect with other

smells in the system, create clusters of code smells, and eventually form a giant `Mega

Cluster' in which, smell initiation is more likely to happen than smell elimination.
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Chapter 6

Conclusion and Future Direction

A framework named FUESC is proposed in this research to analyze evolution patterns

of code smell clusters. Based on this framework, a smell cluster inspection tool SCIT

is developed to study clustering behavior in real-life systems. SCIT is used to perform

a case study on 25 versions of three popular java libraries (which are JUnit, Mockito

and commons-lang). After analyzing the results, decisive answers can be found for

the research question that have been proposed earlier in this study. It is found that,

for JUnit, Mockito and Commons-lang, the number of architectural relations between

code smells increases steadily with time, with the growth rate of 7&, 28% and 57%

respectively. It is also seen that the cluster count for these software also increases at

a steady pace which is 2% for JUnit, 4% for Mockito and 11% for Commons-lang.

Finally, the existence of a giant cluster is found in all three of these software. These

giant cluster holds more that 50% of all the smelly components in these software,

and have a relatively higher growth rate than other clusters. The percentage of new

smell initiation in these clusters vary from 42-49%, while the percentage of smell

elimination vary between 22-25%. So the overall result indicated that, if code smells

are not refactored in code, these will architecturally connect with other smells in the
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system, create clusters of code smells, and eventually form a giant `Mega Cluster' in

which, smell initiation is more likely to happen than smell elimination.

6.1 Threads to Validity

The internal and external validity of this study is discussed in this section.

6.1.1 External Validity

In this study is restricted to open-source libraries which are hosted in Github. There-

fore, it cannot be claimed that the �ndings of this study will apply to commercial

projects. As all the subject of this study are written in java, it cannot be guaran-

teed that projects written in di�erent languages exhibits similar behavior. However,

there are not much di�erences in coding practice between java and other object ori-

ented languages. In addition, the projects used in this study (JUnit, Mockito and

Common-lang) are among the most popular libraries in Java.

In a software project, coding practice, change behavior and project structure

highly depend on the type of project. These factors are not considered in this study to

get more generalized �ndings. Developers level of expertise, is not taken into account

to limit the scope of this research.

6.1.2 Internal Validity

It is a common believe that, human intuition is the best way to detect code smells.

That is why, there is still no accepted standard for detecting smells. However, man-

ually smell detection is time consuming and has inconsistent accuracy. That is why

this study relies on JUnit for detecting smells. Therefore, the outcome of this study

may vary depending on precision and recall of JUnit.
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This investigation is restricted to four code smells. But there exist many others. A

future study targeting all the well known smells will help to gather a more generalized

�nding.

In real-life software development sometimes the developers restructure the projects

for better understanding. The proposed framework does not automatically identify

project restructuring as that work is in a completely di�erent scope. To minimize the

impact of project restructuring, a manual inspection is performed which identi�ed

the versions with most similar project structure.

Sometimes certain methods or classes in version n are renamed in version n+1.

If these changes are not tracked, renamed codes are often considered as new code.

However, tracking these requires a lot of processing and is not always accurate. To

avoid this problems, in this research, major renamings are identi�ed manually and

changed to a common name. For example, in Commons-lang 3.0, a package is named

as `lang', which is named as `lang3' in all the next versions. As a result, all the classes

and methods in `lang3' is considered as new. To tackle this problem, this package

is renamed to `lang3' in all versions manually. There might exist some other smaller

renamings which are not handled in this study.

6.2 Future Direction

This is the �rst work, investigating evolution of smell clusters to understand behavior

of code smells. Therefore, the are many opportunities to improve on it, to extend it

or to use it in a new direction.

Improvement. As an enhancement, this framework should be improved so that

it can track classes and methods from version to version. This will help to reduce

problems regarding project restructuring and renaming. This study currently only

81



considers four smells (God Class, Long Method, Feature Envy, Type Checking). To

have more generalized results, other smells should also be considered in future re-

searches. Cluster evolution of individual smells should be performed to understand

more detail about evolution patterns.

Extension As it is seen in the literature, refactoring all the smells is not feasible.

Therefore the future direction lies in development of a refactoring recommendation

technique that will suggest minimum amount of refactorings to eliminate maximum

possible smell relations. It will help to control the size of mega clusters, or even

eliminate those.

New Direction. Another future direction is to develop a commit to commit smell

tracking technique using the current concept (version to version). This technique

will help to track smell clusters in real-time. As a result, prediction future smell

clusters and accurate refactoring suggestions can be obtained. However, to work in

this direction, a custom smell detection technique must be developed that can identify

smells by comparing commit history.

There are many other opportunities to work on from this study. In future, the

contributors of this research, intend to work on the above discussed directions to aid

developers produce better code.
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