
An Adaptive Bayesian Approach for URL Selection to Test
Performance of Large Scale Web-Based Systems

Alim Ul Gias
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

alimulgias@gmail.com

Kazi Sakib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

sakib@univdhaka.edu

ABSTRACT
In case of large scale web-based systems, scripts for perfor-
mance testing are updated iteratively. In each script, mul-
tiple URLs of the system are considered depending on in-
tuitions that those URLs will expose the performance bugs.
This paper proposes a Bayesian approach for including a
URL to a test script based on its probability of being time
intensive. As the testing goes on the scheme adaptively up-
dates its knowledge regarding a URL. The comparison with
existing methods shows that the proposed technique per-
forms similar in guiding applications towards intensive tasks,
which helps to expose performance bugs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
H.3.4 [Information Systems]: Systems and Software—
Performance evaluation

General Terms
Algorithms, Design, Performance

Keywords
Bayesian Learning, Performance Testing, Web-based Sys-
tems

1. INTRODUCTION
Software performance testing is highly essential for re-

sponsive systems in order to fix several performance issues so
that services can be provided seamlessly [5]. It is important
to automate the whole performance testing procedure for
reducing the time required to complete the tests. However,
testing large scale systems exhaustively to find all perfor-
mance issues is infeasible hence the goal is to identify as
many as performance bottlenecks within a limited period of
time.

One approach of exposing bottlenecks could be steering
the system execution towards the time intensive tasks. It is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

more likely that bugs will reside in the time intensive region
of the application as that part usually involves huge com-
putations. With a view of finding an appropriate steering
scheme, this paper proposes a Bayesian approach for large
scale web systems. The approach is adaptive which guides
an application towards time intensiveness by selecting URLs
based on its probability of being computationally intensive.

2. RELATED WORK
Static approaches have been taken for designing test scripts

using schemes like combinatorial design interactions [4]. How-
ever, it is arguable that these scripts can cover all or at least
a major part of the performance issues within the system.
Work has also been done utilizing techniques like cluster-
ing analysis of execution profiles [2]. Although this work is
used in functional testing, the scheme can also be used for
performance analysis.

To the best of authors’ knowledge, the most recent scheme
for finding performance issues in large web-based systems is
FOREPOST [3]. FOREPOST is adaptive in nature and it
starts testing with m out of n number of URLs. After col-
lecting and analyzing execution profiles, it generates rules
saying which URLs (g) must be considered in the next iter-
ation and which must not (b). In the next iteration, those g
URLs are kept and the rest (m − g) positions are filled up
from the (n− b) URLs. If no rule is generated, m URLs are
again selected randomly.

Problems with FOREPOST are that more rules will even-
tually make the system complex and conflicting rules may
arise. Moreover, if a URL is labeled as bad, it will be perma-
nently discarded whereas it could turn out to be a good one
if it were picked with another set of URLs. These issues are
related to uncertainties which should be resolved to expose
more accurate performance bugs.

3. THE BAYESIAN SCHEME
The proposed scheme uses similar execution profiles anal-

ysis approach like FOREPOST. Any element from the set
L = {good, bad, unassigned} is used to label each out of w
profiles after completing the analysis. However, instead of
producing rules the scheme assigns a probability pi ∈ P to
a URL ui ∈ U using Bayes rule. This probability gives an
intuition that how good this URL will be in guiding applica-
tion’s execution towards its time intensive region. Initially
equal probabilities are assigned to all URLs. The URLs are
selected using the roulette wheel selection algorithm similar
to [1]. As the testing goes on, the probabilities are updated.
A very small value ε is added with all these updated proba-

bilities to avoid having zero values. This will also prevent a
URL from being permanently discarded as it will still have
a very small chance of getting selected from roulette wheel
selection algorithm. The whole procedure is illustrated in
Algorithm 1 and it can be called iteratively till a desirable
time limit to steer the application’s execution.

Algorithm 1 Knowledge Update

Input: w, ε, U , P, L
Output: Updated P
1: S ← ∅
2: while w profiles are not created do
3: Select m URLs {u1, u2,, um} using roulette wheel

selection algorithm like [1]
4: S ∪ {u1, u2,, um}
5: Run test script with these m URLs to create profile
6: end while
7: Label each profiles as any of lj ∈ L (some may be good,

some may be bad or unassigned)
8: T ← ∅
9: total = 0

10: tmpTotal = 0
11: for each ui ∈ S do
12: P (ui|good) = frequency of ui in good profiles

frequency of profiles labeled as good

13: P (good) = frequency of good profiles
w

14: for each lj ∈ L do

15: P (ui|lj) =
frequency of ui in lj profiles

frequency of profiles labeled as lj

16: end for
17: P (good|ui) = P (ui|good)P (good)∑

lj∈L P (ui|lj)P (lj)

18: ti = P (good|ui) + ε
19: T ∪ {ti}
20: total+ = pi
21: tmpTotal+ = ti
22: end for
23: for each ui ∈ S do
24: pi = total × ti

tmpTotal

25: end for

4. RESULTS
The proposed scheme is being implemented and tested on

certain parts of two applications - JPetStore and MVC Mu-
sic Store. As the goal is to guide the application towards
time intensive region, performance of the proposed scheme
is interpreted in terms of time taken for a certain number of
transactions. The results are compared with two different
approaches - Random Testing and FOREPOST. From Fig-
ure 1 and 2 it is seen that with the increase of transactions,
better results can be obtained using Bayesian and FORE-
POST scheme. Moreover, the Bayesian Scheme performs
similar to FOREPOST making it an alternative for guiding
application’s execution towards time intensiveness.

5. CONCLUSION
This paper proposes a Bayesian technique for steering any

web based systems towards its time intensive region. Exper-
imental results show that the scheme provides similar results
like FOREPOST. One of the key benefits of this scheme is
that it will not discard any URL by labeling it as bad like
FOREPOST. Instead, the proposed approach assigns a very
small probability to that URL giving it a minor chance to get
selected from the roulette wheel selection algorithm. This
is important as this URL may turn out to be a good one in
any other combination of URL selection.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

800 1600 2400 3200 4000

T
im

e
 (

in
 m

ill
is

e
c
o

n
d

s
)

Number of Transactions

Random
FOREPOST

Bayesian

Figure 1: Time comparison of three different ap-
proaches for the application JPetStore.

 50000

 100000

 150000

 200000

 250000

 300000

7500 15000 22500 30000 37500

T
im

e
 (

in
 m

ill
is

e
c
o

n
d

s
)

Number of Transactions

Random
FOREPOST

Bayesian

Figure 2: Time comparison of three different ap-
proaches for the application MVC Music Store.

6. REFERENCES
[1] A. Aleti and I. Meedeniya. Component deployment

optimisation with bayesian learning. In Proceedings of
the 14th international ACM Sigsoft symposium on
Component based Software Engineering (CBSE), pages
11–20. ACM, 2011.

[2] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
Proceedings of the 23rd International Conference on
Software Engineering (ICSE), pages 339–348. IEEE
Computer Society, 2001.

[3] M. Grechanik, C. Fu, and Q. Xie. Automatically
finding performance problems with feedback-directed
learning software testing. In Proceedings of the 34th
International Conference on Software Engineering
(ICSE), pages 156–166. IEEE Computer Society, 2012.

[4] M. Grindal, J. Offutt, and S. F. Andler. Combination
testing strategies: a survey. Software Testing,
Verification and Reliability, 15(3):167–199, 2005.

[5] E. J. Weyuker and F. I. Vokolos. Experience with
performance testing of software systems: Issues, an
approach, and case study. IEEE Transactions on
Software Engineering, 26(12):1147–1156, 2000.

