
SOURCE CODE SIMILARITY ANALYSIS TO ENHANCE THE ACCURACY OF
SOFTWARE DEFECT PREDICTION MODEL

by

Md. Rayhanul Islam
Registration No: H-562

Session: 2008-2009

A Thesis
Submitted in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

Institute of Information Technology
University of Dhaka

DHAKA, BANGLADESH

c⃝Md. Rayhanul Islam, 2015

SOURCE CODE SIMILARITY ANALYSIS TO ENHANCE THE ACCURACY OF
SOFTWARE DEFECT PREDICTION MODEL

Md. Rayhanul Islam

Approved:

Signature Date

Supervisor: Dr. Kazi Muheymin-Us-Sakib

Committee Member: Dr. Zerin Begum

Committee Member: Dr. Kazi Muheymin-Us-Sakib

Committee Member: Dr. Muhammad Mahbub Alam

Committee Chair: Shah Mostafa Khaled

To my parents and the people who are continuously working to make this
planet peaceful.

iii

Abstract

Software defect prediction is a process where software code metrics and past information

are analyzed to predict defects. The early estimation of software defects helps software in-

dustries to develop software with minimum cost and effort. The accuracy and performance

of a prediction model depends on the Dataset used to train the model. To provide proper

Dataset in the training process, clustering algorithms can be applied to form clusters with

similarities that contains less variablities among the Dataset. Due to multidimensionalities

in the software engineering Dataset, it has been found that variability reducing clustering

algorithms cannot perform well until multidimensionalities are reduced.

In this thesis, the Dataset similarities are analyzed from two perspectives - first from

the source code, and then from the code metrics points of views. The similarity of software

source code is analyzed by using a new algorithm called the Package Based Clustering

(PBC) and the similarity of code metrics is analyzed using Similarity Analysis by Reducing

Code Metrics’ dimension (SARCM) technique.

PBC groups the similar and related classes from an Object Oriented (OO) system. For

that purpose, it extracts the package information from the source code and classifies all OO

files according to package information. Then it considers each package as a cluster and

also merges small clusters so that the prediction model can work.

In SARCM, it reduces the dimensions of the software engineering Dataset into two

latent variables based on the significance of code metrics to software defects. It applies

regression analysis on the available Dataset to find the significance of code metrics. Then

it merges code metrics based on their positive or negative significance. Now the distance

based clustering algorithm (such as DBSCAN) can group those Dataset into multiple clus-

ters based on their similarities.

Experiments have been performed on some prominent open source software Dataset.

Results show that training the defect prediction model by similar Dataset improves the

iv

accuracy and performance of the prediction model. The experiments proved that, the pro-

posed PBC outperforms the prediction model using the entire system and BorderFlow clus-

tering approach in terms of accuracy. In another technique, results show that the SDP model

considering SARCM based DBSCAN and WHERE clustering techniques perform better

than the PCA based DBSCAN and WHERE clustering techniques.

v

Acknowledgments

I take this opportunity to express my profound gratitude and deep regards to my thesis

Supervisor Dr. Kazi Muheymin-Us-Sakib, Director and Associate Professor, Institute of

Information Technology, University of Dhaka, for his exemplary guidance, monitoring and

constant encouragement throughout the course of thesis. The blesses, helps and guidances,

given by him time to time shall carry me a long way in the journey of my life on which I

am about to embark.

I would like to convey my heartfelt gratitude to all faculty members, Institute of In-

formation Technology, University of Dhaka, for their support, inspiration, criticism and

constructive feedback which has immensely strengthened my confidence during my thesis.

I also take this opportunity to express a deep sense of gratitude to DSSE Student Re-

search group, Institute of Information Technology, University of Dhaka, specially Asif

Imran, Lecturer, IIT and Nadia Nahar (MSSE0301) for their cordial support, valuable in-

formation and guidance, which helped me in completing this task through various stages.

I am expressing ever gratefulness to all my fellow classmates whose advice, feedback

and cooperation is truly incomparable.

I am also thankful to Ministry of Information and Communication Technology, Govern-

ment of the People’s Republic of Bangladesh for granting me ICT fellowship of 2014−15

1st round.

Finally, I am indebted to my parents for the many years of hard work and sacrifices they

have made to support me. Without them, this thesis would never have been started.

vi

Publications

The motivation to proceed with the research and achieve completion got a tremendous

boost when our research paper got accepted in reputed conferences. The publication made

during the course of this research has been listed below.

1. R. Islam and K. Sakib. A package based clustering for enhancing software defect

prediction accuracy. In 17th International Conference on Computer and Information

Technology (ICCIT), 2014, pages 81−86, Dec 2014.

vii

Table of Contents

Approval ii

Dedication iii

Abstract iv

Acknowledgments vi

Publications vii

Table of Contents viii

List of Tables x

List of Figures xi

List of Java Source Codes xii

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Research Question . 3
1.4 Contribution . 4
1.5 Thesis Organization . 5

2 Background Study 6
2.1 Introduction . 6
2.2 Defination of Software Defect and SDP 7

2.2.1 Selected Defect Prediction Model 8
2.2.2 Other Defect Prediction Models 10
2.2.3 Challenges in Software Defect Prediction 11

2.3 Software Code Metrics . 13
2.3.1 Object Oriented Design Metrics 14
2.3.2 Software Size Metrics . 18
2.3.3 Other Code Metrics . 19

2.4 Conclusion . 20

3 Package Based Clustering 21
3.1 Introduction . 21
3.2 Related Work . 23

3.2.1 Clustering Based Defect Prediction 23
3.2.2 Code Metrics Selection . 27

viii

3.3 Overview of the Java Project . 32
3.3.1 Class . 32
3.3.2 Package . 34

3.4 Proposed Package Based Clustering Algorithm 36
3.4.1 OO Class Identification . 36
3.4.2 Package Identification and Cluster formation 37
3.4.3 Cluster Validation . 38

3.5 Experimental Setup and Result Analysis 38
3.5.1 Software Defect Prediction Model 40
3.5.2 Prediction Validation . 41
3.5.3 Existing Clustering Algorithms 42
3.5.4 Tools and Technologies . 43
3.5.5 Dataset Collection . 44
3.5.6 Implementation Details . 44
3.5.7 Result Analysis . 45

3.6 Conclusion . 47

4 Similarity Analysis by Reducing the Code Metrics’ Dimension 49
4.1 Introduction . 49
4.2 Related Work . 52

4.2.1 Existing Dimension Reduction Techniques 52
4.2.2 Dimensions Reduction in Software Defect Prediction 55

4.3 Proposed Methodology . 58
4.3.1 Dimension Reduction Approach 59
4.3.2 Measuring the Similarity of Objects 62

4.4 Experimental Setup and Result Analysis 67
4.4.1 Software Defect Prediction Model and Its Validation 68
4.4.2 Tools and Technologies . 70
4.4.3 Dataset Collection . 70
4.4.4 Implemented Clustering Approaches 71
4.4.5 Implementation Description of the Used Techniques 72
4.4.6 Result Analysis . 73

4.5 Conclusion . 81

5 Discussion and Conclusion 82
5.1 Introduction . 82
5.2 Package Based Clustering . 82
5.3 Similarity Analysis by Reducing the Code Metrics’ Dimension 83
5.4 Future Research Directions . 84
5.5 Final Remarks . 85

Bibliography 86

ix

List of Tables

3.1 The mean, median and standard deviation of Absolute Residual for PBC . . 45
3.2 The error values of Dataset . 46

4.1 The mean, median and standard deviation value of AR 75
4.2 The error values of all Datasets for DBSCAN and WHERE 78

x

List of Figures

2.1 The general overview of a SDP model . 7
2.2 The class hierarchy of an OO system . 15
2.3 The coupling among different classes in an OO system 16
2.4 A simple overview of lack of cohesion in a class 18
2.5 A simple overview of a cohesive class . 18

3.1 The software project hierarchy developed by Java 33
3.2 The distribution of error values by PBC 47

4.1 The distribution of OO classes in the dimesion reduced Dataset by SARCM
for Ant-1.6 . 63

4.2 The distribution of OO classes in the dimesion reduced Dataset by PCA for
Ant-1.6 . 64

4.3 The distribution of error values for DBSCAN 79
4.4 The distribution of error values for WHERE 80

xi

List of Java Source Codes

3.1 The class template in Java . 33
3.2 The package template in Java . 35
3.3 The nested package template in Java . 35

xii

Chapter 1

Introduction

In this chapter, the motivation of doing research on software defect prediction is illustrated,

by which the research questions are invoked. To address those questions, the whole re-

search is carried out, and the short description of research methodology and outcomes are

outlined to answer these research questions.

1.1 Introduction

Software defect prediction analyzes source code, code metrics, code churn and past defect

information by applying machine learning or statistical models to predict defects for the

future releases of software. It enables to assess the software quality as well as the source

code before its final release to the end user. The US National Institute of Standards and

Technology (NIST) estimated that software industries spend $59.5 billion for identifying

software defects and failures per year [1]. To provide the quality full software to end user,

every software company spends more than 40% of the total budget of software for testing

purpose [2]. As a result, for ensuring the quality and estimating the complexity, software

defect prediction model has been emerged to solve common problems that software indus-

tries face to maintain software quality.

1.2 Motivation

Knowing the possible causes of software defects early, could help on planning, control-

ling and executing software development activities because it assists in decision making of

Project Managers (PM). It helps to develop software with minimum cost and effort. Soft-

1

ware project with many defects lack the software quality and increases the development

cost. Using Software Defect Prediction (SDP) model, one can able to -

• Identify potential defect prone software.

• Predict number of defects.

• Identify possible causes of defects.

The SDP model usually takes the past defect information and code metrics as input

and establishes relationship among those to predict defects. However, those input Dataset

contains lots of variabilities such as heterogeneity among code metrics, which hinder the

learning procedure of a SDP model. The success of defect prediction approaches depends

on how accurately those could minimize the variablilities among the Dataset.

Grouping the Dataset into multiple clusters is the prominent solution to minimize the

Dataset variabilities. There are number of clustering algorithms such as BorderFlow [3],

Subtractive Clustering [4], WHERE clustering [5, 6], etc. which are common in SDP tech-

niques. These clustering techniques use dependencies among code metrics, class coupling,

etc. to group the software engineering Dataset.

Besides varaibilities, those Dataset are also multidimensional because each entry con-

tains lots of properties such as coupling between objects, number of public methods, etc.

There are few defect prediction approaches, which use Principal Component Analysis

(PCA) before applying clustering techniques to reduce the dimension of Dataset [5, 6].

However, considering minimum number of components raise the question that, can a sub-

set of components justify the impact of the whole Dataset.

Distance based clustering algroithms need to plot the Dataset on the two dimensional

plane to measure the distance among the objects. If multidimensionality among the Dataset

is properly reduced, the clustering algorithms may group the Dataset in a better way with

minimum variabilities which may improve the learning procedure of the SDP model. Thus

2

reducing varaibilities through minimizing multidimensionality may improve the accuracy

and performance of the SDP model.

1.3 Research Question

Keeping the research indications in view, it has been realized that there exists enough scope

to improve the software defect prediction accuracy. In this research the objectives are

confined to the followings.

How to reduce the multidimensionalities of the Dataset to be fitted to the variability

minimizing clustering approaches using data similarity analysis. More specifically,

1. How to identify the class level similarities to cluster the related and similar classes

for the purpose of predicting defects in Java using package information? A package

is a collection of related and similar classes. It acts as a component if the software

system is built properly. So, OO classes within a package are related to each other

than the classes outside the package. If a software is divided into multiple clusters

based on the package information, the prediction model will get similar and related

Dataset for training purpose. As a result, the accuracy of the prediction model should

be improved.

2. How to reduce the code level data multidimensionality using the code metrics’ im-

pact to defects? Usually, software engineering Dataset are multidimensional because

each entry contains lots of code metrics attributes such as coupling between objects,

lack of cohesion in methods, number of public methods, etc. Due to this multidi-

mensionalities, clustering algorithms cannot perform well. So, if it is possible to

minimize the dimension of the Dataset based on the significance of code metrics

impact to defects, it will definitely help the defect prediction model.

3

3. How to fit the dimension reduced Dataset to distance based clustering algorithms to

improve the performance of the SDP? The dimension reduced Dataset contains only

two dimensions where similar entries get closer values. If the Dataset is plotted on

the two dimensional plane, the similar objects reside to each other than disimilar

objects. Any distance based clustering algorithm can now group the Dataset based

on their similarities.

1.4 Contribution

In answering these above research questions, this thesis contributes to reduce variablities

by reducing multidimensionalities to improve the accuracy of the defect prediction model

for object oriented software built by Java. These contributions are summarized as follows.

Firstly, this thesis proposes Package Based Clustering (PBC) to group related and sim-

ilar object oriented classes that form packages in Java programing convention. It groups

software based on the package information so that the similar and related classes belong

to one cluster. The experimental results show that the software defect prediction model

considering PBC is better than considering the entire system or BorderFlow algorithm [3].

Secondly, this thesis proposes a technique named as Similarity Analysis by Reducing

Code Metrics (SARCM) to reduce the dimensions of software engineering Dataset based on

the significance of code metrics to the number of software defects. It reduces the dimension

in such a way where the similar objects of an OO system get closer values in the dimension

reduced Dataset. This technique provides an environment where different distance based

clustering algorithms can perform on the dimension reduced Dataset by plotting it in the

two dimensional plane.

Thirdly, this thesis uses DBSCAN for the first time in the dimension reduced Dataset

by SARCM to minimize variablities. Since the DBSCAN finds clusters based on the rech-

4

ability distance among different objects, clusters are formed based on the similarity among

objects, because the dimension reduced Dataset contains closer value for similar objects.

As a result, the SDP model gets proper training Dataset to improve the performance and

accuracy of the model. Results show that the prediction model using SARCM based DB-

SCAN outperforms the prediction model considering PCA based DBSCAN.

1.5 Thesis Organization

The rest of this thesis is organized as follows.

1. Chapter 2: Background Study In this chapter, overview of software defect, defect

prediction model, its classification, software code metrics and its classification will

be discussed.

2. Chapter 3: Package Based Clustering In this chapter, Package Based Clustering

(PBC) for grouping the source for the software defect prediction model will be pre-

sented.

3. Chapter 4: Code Metrics Similarity Analysis using Dimension Reduction tech-

nique for SDP In this chapter, The significance of code metrics to software defects

will be analyzed to group the source code into multiple clusters to train the SDP

model properly.

4. Chapter 5: Discussion and Conclusion In this chapter, retrospect on overall pro-

posed approach for improving the accuracy of the software defect prediction model

will be focused along with future research direction.

5

Chapter 2

Background Study

This chapter discusses briefly about the software defect prediction models along with vari-

ous ways of predicting software defects. It also outlines the linear regression as the selected

software defect prediction model and the most significant code metrics for OO system.

2.1 Introduction

Software Defect Prediction (SDP) is a process of predicting defects by using the code

metrics and bug history of a targeted software to ensure the quality. The Software Quality

Assurance (SQA) is a set of activities that ensures software system to meet a specific quality

level. Software companies always concern to explore the defects of software before its

release. To predict software defects, many researches have already been conducted for

building prediction models (for example, Linear regression [7, 8], Logistic regression [9],

Support Vector Machines (SVM) [10], Bayesian network [11], etc.). These models are

popularly known as SDP models.

Usually, the SDP model is selected from the statistical or machine learning models

to apply on the software engineering Dataset such as Promise Repository [12] to predict

defects of software. Finally, the accuracy and performance of the prediction model is eval-

uated by using precision, recall, F-measure, coefficient of determination, etc [13]. The

general overview of a SDP model is illustrated in Figure 2.1.

6

Software defect dataset

Software

source

code
Predictor Predicted defects

Figure 2.1: The general overview of a SDP model

2.2 Defination of Software Defect and SDP

The software defect is any flaws or errors in a software that produces unexpected results. A

software programmer, designer or others, associated to the development of a software can

make mistakes or errors while designing or building the software. These mistakes or errors

are called defects [14, 15].

The term defect may vary based on the perception of the software developers, QA teams

or Project Managers (PM). For example, bug databases of open source software contain

user requests which are treated as bug correction requests by the user and often considered

as feature requests by the developers of those systems. That means, what one stakeholder

considers as a defect may not be perceived as the same by other stakeholders. In essence,

software defect is any kind of deviation from stakeholders’ expectation.

A SDP is a method that helps the software practitioners by predicting possible defects

that the end product may contain. The software defect prediction model, also known as

defect predictors use the software code metrics and the past defect information to predict

defects for the current project. According to Brooks [16], half of the cost of software

development is in unit and systems testing. Harold and Tahat also address that testing phase

requires approximately 50% of the whole project schedule [17, 18]. The defect predictor

7

model is applied to the software project before testing to identify where the defects might

exist. This allows PMs to efficiently allocate their limited resources.

The SDP model, though works well in predicting the software defect, there exists criti-

cal steps and decisions such as prediction model selection, code metrics selection, etc. that

are needed to be considered when building the defect prediction model. The various ways

of defect prediction and challenges that should be in account when predicting defects are

described in the following subsections.

2.2.1 Selected Defect Prediction Model

The SDP uses a variety of modeling techniques to predict the defects of software. These

prediction models can be categorized to the statistical models and machine learning algo-

rithms. The statistical models formalize the relationship between the independent variables

and the dependent variable to predict the next dependent variable. On the other hand, ma-

chine learning algorithms learn from the experiences that it gained. The selected defect

prediction model considered in this thesis is described below.

Linear Regression Analysis

The regression analysis is a statistical process for estimating the relationships among the

variables. It helps to understand how the values of the dependent variables change when the

values of independent variables are changed. The performance of the regression analysis

depends on the data used to train the regression model and how it relates to the regression

model being used. There are many techniques for carrying out the regression analysis such

as linear regression, logistic regression, step wise regression, nonparametric regression,

etc [8]. In this thesis, the linear regression analysis has been chosen as prediction model

8

because there exists linear relationship among the variables of the used Dataset. The detail

description of linear regression analysis is given below.

Linear regression analysis is the process of analyzing the relationships between vari-

ables, usually the variables are divided into dependent and independent variables. Let Y

denote the dependent variable which will be predicted and X1, ˙..., Xk denote the independent

variables. The linear regression analysis predicts the value of dependent variable (Y) by

analyzing the independent variables (X1, ˙..., Xk). The equation for computing the predicted

value of Y is given in Equation 2.1.

Y = b1X1 +b2X2 +b3X3 + ...+bnXn + c (2.1)

This formula is a straight-line function of each of the X variables, holding the others fixed,

and the contributions of different X variables to the predictions are additive. The slopes

of their individual straight-line relationships with Y are the constants b1, b2,..., bk, the so-

called coefficients of the variables. The coefficient (bi) is the change in the predicted value

of Y per unit of change in Xi. The additional constant c, the so-called intercept, is the

prediction that the model would make if all the Xs are zero.

The linear regression fits in the Dataset when the variables in the Dataset have linear

relationship among these. So, before selecting the linear regression as the prediction model,

it is needed to find the relationship among the variables to decide whether linear regression

is the best choice or not. There is also another analysis to determine the prediction model

using residual values. If the residual values, generated from the regression analysis, are

randomly distributed compared to two consecutive observations, in that case the linear

regression analysis is perfect choice as a prediction model.

9

2.2.2 Other Defect Prediction Models

There exists lots of perdition models in the literature such as logistic regression [9, 19],

Naive Bayes [20], Support Vector Machine (SVM) [10, 21, 22], etc. The short descriptions

of those prediction models are given below.

Naive Bayes Classifier

It is the simple probabilistic classifier, based on Bayes theorem [11]. The classifier calcu-

lates a future probability for a class using the prior probability of that class. Given a set of

objects of an OO system x1,x2,x3...,xn and c1,c2,c3...,cn are the corresponding defects of

those objects. The conditional probability of cn can be computed using Bayesian theorem

using Equation 2.2.

P(Ck|x) =
P(Ck)P(x|Ck)

P(x)
(2.2)

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model that analyzes data and rec-

ognizes patterns, especially designed for binary classification [10, 21, 22]. SVM utilizes

mathematical programming to directly model the decision boundary between classes, for

example, defective and non-defective. An SVM tries to find the maximum margin hyper-

plane, a linear decision boundary with the maximum margin between it and the training

examples in defective class and the training examples in non-defective class. Therefore,

the optimal separating hyperplane maximizes the margin of the training data.

Given a set of training objects each of which belong to one of two categories, an SVM

training algorithm builds a software defect prediction model that assigns new examples into

10

one of the two categories (for example, defective and non-defective classes). The operation

of the SVM algorithm is based on finding the hyperplane that gives the largest minimum

distance to the training examples. This distance receives the important name of margin

within SVMs theory.

K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a type of instance based learning for classifying objects

based on closest training examples in the feature space [23–25]. The training examples

are mapped into multidimensional feature space which is partitioned into regions by class

labels. An object is assigned to the class if it is the most frequent class label among the

k nearest training samples. An Euclidean distance is used to compute the closeness to the

samples. The number of neighbors can be set as a parameter considering the mean squared

error for the training set.

Besides those discussed prediction models, other prediction models such as Bayesian

network [11], Step Wise Linear Regression [26], Markov Chain [27], Artificial Neural

Networks [28], etc. are widely used as prediction model in software defect prediction.

2.2.3 Challenges in Software Defect Prediction

Most of the SDP models use statistical and machine learning models for predicting soft-

ware defects. The widely used SDP models in literature usually use public Dataset and

sometimes use private Dataset to identify the relationship between software defects and

code metrics. The success of a SDP model depends on various factors such as prediction

model selection, Dataset selection, etc. to predict more accurately. Some challenges that

are needed to be considered in software defect prediction are outlined below.

11

Dataset Collection

Every SDP model uses software Dataset such as software code mertics, defect information,

etc. from the public data sources such as Promise Repository [12] and NASA Repository

[29]. These software data sources contain lots of open source software code metrics and

past defect information to help software engineering researchers. The SDP model using

private Dataset can not be compared to other models because those cannot be reached. To

make any SDP model acceptable to other, it is always appreciated to use public data source

for the defect prediction.

Code Metrics Selection

Once the Dataset has been selected for the SDP model, it is now time to identify the most

significant code metrics so that the prediction model can accurately relate the code metrics

to software defects. There have been accomplished lots of researches to identify these code

metrics. After reviewing these experiments, in this thesis, some code metrics have been

considered for predicting defects such as Lines of Codes, Coupling between Objects, etc.

(see Section 2.3 for detail description).

Model Selection

As mentioned above, there are lots of prediction models in the literature for SDP. Some of

those models are already outlined in Section 2.2.1. The model selection process for defect

prediction is very critical because its success depends on the selected model used for the

prediction. Prior researches show that most of the SDP models use machine learning or

statistical inferences such as Decision Tree, Linear Regression, Bayesian network, Sup-

port Vector Machine, Logistic Regression, etc [13]. Before selecting a prediction model, it

12

should be ensured that the prediction model must fit to the data and can explain the data ac-

curately. In this thesis, Linear Regression has been chosen as the prediction model because

the Dataset used in this experiment are tightly coupled to each other and residual values are

randomly distributed for this prediction model.

Data Analysis

The success of software defect prediction process depends on the training process of the

SDP model. Normally, the SDP model uses software code metrics and defect history as

the training data. The software engineering data always contains some variablities which

mislead the training process [30]. To provide the best data in the training process, many

researches have been performed to find out the best set of data. Some researches suggest

to group the Dataset by analyzing inter relationships, so that the SDP model gets proper

training Dataset. So, before applying SDP model to the Dataset, it is needed to ensure that

the prediction model fits to the data.

2.3 Software Code Metrics

The software metric or code metric is a quantitative measure of a software system [31].

There are lots of software metrics, for example, Method level, Class level, Component

level, Process level, Cyclomatic complexity, etc [13]. These code metrics have been used

for software defect prediction to improve the quality. The software code metrics have mul-

tidimensional usage in software industry such as defect prediction, schedule and budget

planning, cost estimation, quality testing, software debugging, software performance opti-

mization, etc. The well known OO and size metrics which have been used in this thesis for

software defect prediction are reported below.

13

2.3.1 Object Oriented Design Metrics

When the object oriented software development paradigm has become popular, a lot of re-

searches have been conducted to find the most important code metrics for the OO designed

system. One of the most important OO code metrics, CK metrics, was proposed by Chi-

damber and Kemerer [31]. In addition to CK metrics, there are also other metrics suite such

as MOOD [32], QMOOD [33], L&K [34], etc. Among all the OO design metrics, the CK

metrics is the most influential code metrics and widely used to measure the quality of OO

designed system [13, 35, 36]. The detail description of the CK metrics are given below.

Weighted Methods per Class (WMC) The WMC is the sum of all methods that belong

to a class [31]. It indicates how much effort is required to develop and maintain a particular

class. The low value of WMC points to greater polymorphism and the high value indicates

the class is complex, difficult to maintain and reuse. The classes with high value of WMC

are often re-factored into two or more classes to make the source code simple, maintainable

and reusable.

Depth of Inheritance Tree (DIT) The DIT simply counts the number of ancestors of

a class [31]. The high value of DIT means the class inherits greater number of methods

which makes a class complicated and complex. To the Object Oriented Programing (OOP)

point of view, a class should maintain the single responsibility principle. When a class

inherits a lot of classes, it is most likely that the class inherits a lot of methods which is the

violation of the OOP principle. As a result, the designed system cannot utilize the benefits

of OOP principles.

From the Figure 2.2, the DIT values of different classes are given below:

• DIT (C0) = 0

• DIT (C1) = 0

• DIT (C2) = 1

14

Figure 2.2: The class hierarchy of an OO system

• DIT (C3) = 2

• DIT (C4) = 3

• DIT (C5) = 4

Number of Children (NOC) The NOC simply counts the immediate sub-classes of a

given class [31]. It is also a measure of how many sub-classes are going to be inherited

by the methods of a particular parent class. From Figure 2.2, the NOC values of different

classes are given below:

• NOC (C0) = 1

• NOC (C1) = 1

• NOC (C2) = 1

• NOC (C3) = 2

• NOC (C4) = 3

• NOC (C5) = 4

15

The NOC value also gives the potential influence of a class on the system designing.

The high value of NOC ensures the high usage of the inheritance and the greater possibility

of the reusability in a system. Sometimes, it may also be a case of misuse of sub-classing

and increase the system complexity that results more testing of the methods to ensure the

quality of a software.

Response for a Class (RFC) The RFC metric is the total number of all methods that can

be executed in response to a message received by a class [31]. It is the sum of the methods

of a class and all distinct methods that are invoked directly within the class methods. If a

class invokes large number of methods in a response, the testing and debugging of the class

becomes more complicated and the tester requires a greater level of understanding to test

the method.

Coupling Between Objects (CBO) The CBO simply counts the number classes to

which one single class is connected [31]. A class can be coupled to other classes through

parameter passing, shared variables, common database access or direct method calling, etc.

From the example in Figure 2.3, the coupling value of these classes are listed below:

Figure 2.3: The coupling among different classes in an OO system

• CBO(A)=2

16

• CBO(B)=2

• CBO(C)=3

• CBO(D)=1

The High value of CBO is always detrimental to modular design and prevents reuse of

classes. When a class has high CBO value, it means that the class has high dependency to

the other classes. So, the corresponding class has high possibility of having defects than

others and needs more testing compared to other. On the contrary, the low value of CBO

indicates the simplicity of a class and it is easy to reuse in another application.

Lack of Cohesion of Method (LCOM) The cohesion measures how well the methods

in a class are connected to each other [31]. It actually means the number of methods that

do not share common fields like methods, properties, etc. A class is called cohesive class

if it performs only one function. So, the lack of cohesion means that the class performs

more than one responsibility. From the OOP point of view, a class should perform only one

responsibility. The LCOM value is used to determine whether the class violates the single

responsibility principle or not.

LCOM = 1 means that the class is cohesive class and LCOM ≥ 2 means that the class

has more than one responsibility and should be split to make the design simple. High

cohesion among the methods is always desirable as it helps to achieve encapsulation. Low

cohesion indicates the inappropriate design and high complexity which leads to create fault

prone software.

In Figure 2.4, a class consists of methods A through E and variables x and y. A calls B

and B accesses x. Both C and D access y. D calls E, but E does not access any variables.

This class has 2 unrelated components. The class can be split into the following compo-

nents such as A, B, x and C, D, E, y. So, it will be appropriate to split the class into two

classes. For this class, the LCOM value is 2.

17

Figure 2.4: A simple overview of lack of cohesion in a class

Figure 2.5: A simple overview of a cohesive class

In Figure 2.5, Method C access x to increase cohesion. Now the class consists of a

single component where each and every variable and method are connected to each other.

So the LCOM value for this class is 1. It is a cohesive class.

2.3.2 Software Size Metrics

Besides the CK metrics [31], the well known software size metrics which are the Number

of Public Methods (NPM) [3] and the Lines of Code (LOC) [3] have been employed for

defect prediction. The short description of those are given below.

Number of Public Method (NPM) It is the sum of public methods in a class that

can accessible from outside of the class [3]. The high value of NPM indicates that the

18

class is highly coupled with other classes because these are interfaces by which classes

communicates to each other. The high value of NPM also shows that the corresponding

class is too complex and has many responsibilities which complicates the system.

Lines of Code (LOC) The LOC simply counts the total number of lines from the source

code by avoiding pure whitespace and lines containing only comments [3]. It measures the

volume of the source code. It can only be used to compare projects, built by the same pro-

graming language and the same coding standards. It is typically used to predict the amount

of effort that will be required to develop a program, as well as to estimate programming

productivity or maintainability once the software is produced.

2.3.3 Other Code Metrics

Besides the above discussed software code metrics, there are also other code metrics such

as Halstead Metrics [37], McCabe metrics [38], etc. All of these code metrics are frequently

used for defect prediction. The McCabe metrics is used to capture the structural complexity

of the source codes [38]. It includes cyclomatic complexity v(g), design complexity ev(g)

and essential complexity iv(g). Cyclomatic complexity measures the number of linearly

independent paths to determine the source codes complexity. The Halstead Code Metrics

[37] is another way to measure the complexity of a program’s source code. It measures the

complexity and difficulty of the source code using the number of distinct operators (n1), the

number of distinct operands (n2), the total number of operators (N1) and the total number

of operands (N2). It can be used to calculate the program’s length, difficulty, effort, bug,

volume, etc.

19

2.4 Conclusion

This chapter discusses briefly about the software defect prediction models along with var-

ious ways of predicting software defects. It also highlights the linear regression as the se-

lected software defect prediction model with the challenges that must be taken into account

when predicting software defects. Lastly, It lists out the most significant code metrics,

that is CK metrics for OO system. The next chapter discusses about the proposed Package

Based Clustering (PBC) for software defect prediction.

20

Chapter 3

Package Based Clustering

In this chapter, the proposed Package Based Clustering, selected Dataset, prediction model

and its validation process are outlined. Finally, the result analysis is carried to show the

importance and effectiveness of the proposed technique.

3.1 Introduction

Software defect prediction models use software code metrics and knowledge from previ-

ous projects to predict software defects for future releases. Early estimating the faultiness

of a software can help practitioners to assess their current project status as well as it re-

duces the software development cost. To predict defects before software testing process,

many researches have been conducted using different defect prediction models, for exam-

ple, Neural network, Naive Bayes, Regression modeling, Decision tree, etc. [13]. Most of

those models predict software defects by considering the entire system. Due to variability

in software data, prediction models considering the entire system do not always provide the

desired results [30]. So, if software defects are predicted by partitioning the software into

multiple clusters, it may produce better results than those [3].

Software clustering can be accomplished by using different clustering algorithms such

as BorderFlow [3], subtractive clustering [4], etc. Those clustering algorithms use software

code metrics, for example, Class level, Method level, Process level, etc. or source code

dependencies such as class reference to form clusters from the software. Although, clus-

tering algorithms help defect prediction models to improve the accuracy and performance,

all of those cannot always provide the best results because of the inefficiency of clustering

algorithms to group the software.

21

In recent years, several software defect prediction models have been developed to pre-

dict software defects. Menzies et al. [5, 6] proposed that learning from software clusters

with similar characteristics is better than learning from the entire system, because it may

falsify the data used by the prediction model. It performs clustering by using WHERE

clustering technique which only considers the code metrics and learning treatment from

pairs of neighboring clusters. Scaniello et al. [3] proposed a defect prediction model using

clustering where it considers step wise linear regression model to predict defects. It uses

BorderFlow algorithm to form clusters among the related classes by using references be-

tween methods and attributes. Sidhu et al. [4] proposed a software fault prediction model

which uses subtractive clustering algorithm and fuzzy inference system for early detection

of faults. To predict the faults, Zimmermann et al. [39] proposed the use of components for

grouping software metrics, because the likelihood to fail of a component is dependent on

its problem domain.

In this dissertation, a new way to group the source code for software defect prediction

is proposed to improve the accuracy by using Package Based Clustering (PBC) rather than

the entire system. PBC groups the software, implemented using Java, into a number of

clusters using package information of each OO classes. To find clusters, PBC lists out all

OO classes by using textual analysis of source code. It then reads those classes to extract

the package information to form clusters. If the number of OO classes of a cluster is smaller

than the number of explanatory variables used in the defect prediction model, it combines

small clusters to enable those in order to apply prediction model.

To validate the PBC, an experiment has been conducted on open source software which

are Ant, Xalan from Promise Repository [12]. At the beginning of the experiment, se-

lected software were partitioned into multiple clusters using PBC. Then the linear regres-

sion model has been applied to each cluster to find predicted defects. Finally, to show the

importance and effectiveness of the proposed PBC, results are compared with the predic-

22

tion model considering BorderFlow and the entire system. In this context, by considering

the OO classes’ relationships and similarities, PBC performs better than the BorderFlow

clustering algorithm and the entire system.

3.2 Related Work

The literature in defect prediction focuses on predicting software defects by establishing re-

lationships between software defects and code metrics such as CBO, LCOM, LOC, WMC,

NPM, etc. Existing software defect prediction techniques use different types of prediction

models, for example, statistical inference and machine learning model, and Datasets such

as Promise Repository [12] and NASA Dataset [29] to predict defects. Some prediction

models predict defects considering the entire system and other use clustering of source

code to predict defects. Here, the widely used defect prediction models using clustering of

source code along with the selection of the most significant code metrics are described.

3.2.1 Clustering Based Defect Prediction

The source code clustering based defect prediction model divides the whole software Dataset

into multiple clusters for training the prediction model more accurately. The software engi-

neering Datasets always contain lots of variabilities such as heterogeneity among the code

metrics. These variabilities cause the poor fit of machine learning algorithms or statistical

inferences to the Dataset. If the variablities among the Datasets can be minimized by clus-

tering, it will increase the probability of fitting the data to the machine learning algorithms

or statistical inferences. Many researches have already been carried out to group the soft-

ware engineering Dataset for predicting software defects. Some of those experiments are

outlined below.

23

Schroter et al. proposed a defect prediction model that uses program’s import depen-

dencies to predict defect for an OO class [40]. For each OO file, it groups its imported

classes to form a cluster and maps the past failure history of those classes to the selected

OO class. It then predicts the failure-prone possibility of an OO class by using four pre-

diction techniques based on linear regression model, Ridge regression, Regression tree and

SVM respectively. The proposed model has been implemented on 52 eclipse plug-ins.

Results show that the design and past failure history of a software can be used in defect

prediction. It is the first experiment which tries to group the program’s dependencies for

predicting defects. Although it works well, the main drawbacks of this experiment is: it

only considers import dependencies by ignoring the impact of other dependencies such as

call dependencies, data dependencies, etc.

To resolve the above problems, Zimmermann et al. proposed a technique to predict de-

fect at the design time by considering call dependencies, data dependencies, and Windows

specific dependencies such as shared registry entries [39]. It uses Support Vector Machine

(SVM) to predict the post release defects at design time with precision ranged between

0.58 and 0.73. To perform the experiments, it collects the dependencies of all binaries such

as executable files, for example, COM, EXE, etc. and dynamic-link files such as DLL for

Windows Server 2003. It concludes that the software’s defect proneness can be predicted

by using the dependencies among all binaries. These usage of code dependencies indicate

the importance of using clustering technique in SDP.

Tan et al. proposed a defect prediction method based on functional clustering of the

program to improve the performance [41]. For finding clusters, it uses Latent Semantic

Indexing (LSI) to group the software into multiple clusters. It uses the linear regression and

logistic regression for building the prediction models. It selects two-thirds of the Dataset to

train the prediction models and the remaining for test. The prediction capability is justified

by using Pearson and Spearman correlation coefficients of predictive and actual defects [7].

24

To assess the effectiveness of the proposed model, an experiment has been conducted on a

software built by Java with a high fault probability. Results show that the prediction model

built on clustering performs better than the class based models in terms of precision and

recall. It is another important hypothesis to use the clustering technique in SDP.

The usage of the subtractive clustering algorithm and the fuzzy inference system for

early detection of faults was proposed by Sidhu et al. [4]. This approach has been tested

with defect Datasets of NASA software projects named as PC1 and CM1. It uses the

combined model of requirements metrics and code based metrics from the Dataset. Results

show that the accuracy of this model is better than other models considering accuracy, mean

square error and root mean square error. Although this approach performs well, there is no

defined rules to find the sufficient number of clusters using subtractive clustering algorithm

and when to stop executing the algorithm. The prediction model’s accuracy shows more

researches are needed to perform on source code clustering for defect prediction.

To resolve the variabilities among the Dataset, Menzies et al. proposed a software de-

fect prediction model that learns from software clusters with similar characteristics [5, 6].

It shows learning from software clusters is better than learning from the entire system be-

cause it may falsify the data used by the prediction model. It performs clustering by using

WHERE clustering technique that considers the code metrics and learning treatment using

pairs of neighboring clusters. It also generates rules to reduce the number of defects from

the local learning but there also exists the conclusion instability. It advises that empiri-

cal software engineering should focus on ways to find the best local lessons for groups of

related projects. It also shows that global context is often obsolete for particular local con-

texts in defect prediction. This premise also shows the importance of using the clustering

of software Dataset to provide the accurate Dataset for training SDP model.

Bettenburg et al. [30] proposed three kinds of predictors; those were (i) global model

uses the entire Dataset for training; (ii) local model uses the subsets of the Dataset for

25

training, and (iii) multivariate adaptive regression which splines a global model with local

consideration. The third model is the hybrid between global and local model. The proposed

three kinds of predictors use linear regression as prediction model. To perform experiments,

it collects the Dataset from Promise Repository [12] and then it applies Correlation Anal-

ysis (CA) and Variance Inflation (VI) factors analysis on the Dataset to find the potential

multi-collinearity between the source code metrics. In the case of local model, Dataset are

partitioned into regions by a clustering algorithm, named as MCLUST, based on software

code metrics. To avoid over-fitting in the global and local models, the appropriate subset

of the independent variables are selected by using Bayesian Information Criterion (BIC). It

solves the problems of over-fitting by defining penalty term for each prediction variable en-

tering into the model. Finally it uses 10-fold cross validation to get more stable and robust

results. Results show that the local model is better than the global model and the global

model with local consideration outperforms both the global and local models in all cases.

This is also another implication of using clustering in the defect prediction.

Scaniello et al. [3] proposed a defect prediction model which predicts defects using step

wise linear regression (SWLR) that uses clustering of the source code rather than the entire

system. It considers references between methods and attributes to form clusters among

the related classes using BorderFlow algorithm [42]. The BorderFlow clustering algorithm

performs clustering by maximizing the flow from the border to center and minimizing

the flow from border to outside of the cluster. Then it applies the SWLR model on each

cluster and produces better results than other models that perform prediction considering

the entire system. It focuses on clustering using source code whereas Menzies et al. [5, 6]

focuses on clustering using code metrics. It forms clusters considering only related classes

which means it only uses coupling information among the classes to form clusters. So, the

other code metrics’ impacts are needed to analyze for defect prediction. It is also another

hypothesis to perform more researches on clustering of software Dataset for SDP model.

26

In a nutshell, a general overview of defect prediction using clustering emphasizes to

group the software source code by applying different clustering approaches to train the

prediction model more perfectly. All of the above discussed clustering algorithms such

as BorderFlow [3], LSI [41], Subtractive clustering algorithm [4] use software code met-

rics, source code dependencies or code similarities, etc. to group the source codes. Some

approaches use PCA to reduce the dimension of the Dataset before applying the different

clustering algorithms [4–6]. None of those methods work perfectly in all Promise Repos-

itory’s Datasets [12]. So, further researches are needed to perform on clustering of source

code for defect prediction.

3.2.2 Code Metrics Selection

The code or software metric is a quantitative measure to define the quality of a software

system. There are lots of software metrics such as method level, class level, component

level, process level, cyclomatic complexity, etc [13]. These software metrics have mul-

tidimensional usage in the software industry such as schedule and budget planning, cost

estimation, quality testing, software debugging, software performance optimization, etc.

Apart from those, it has been used for defect prediction to improve software qualities.

Among all the metrics, the method level metric is widely used in structured programming

and Object Oriented Programing (OOP) paradigm and the class level code metric is only

used for OOP paradigm. All of the above metrics’ properties are not significant for defect

prediction [13, 43, 44]. To analyze the importance of those metrics, many researches have

already been carried out to identify the best set of metrics for defect prediction. Some of

these researches are listed below.

Cyclomatic complexity is the first attempt to measure the complexity of a software by

Thomas J. McCabe Sr. in 1976 [38]. It computes the complexity of a program by measuring

27

the linearly independent execution paths from the source code. It draws the control flow

graph of a program by considering each instruction as node and data flow among nodes as

directed edges. Cyclomatic complexity, (M) of a program can be calculated by using the

Equation 3.1.

M = EN +2P (3.1)

where,

• E = the number of edges of the graph

• N = the number of nodes of the graph and

• P = the number of connected components

It suggests that the cyclomatic complexity of a program should be smaller than 10

because the high cyclometic complexity means the high probability of having faults [38].

It has been used to measure the quality of source code. Besides this, it is also widely used

for test case generation and defect prediction.

Halstead Code Metrics [37] is another way to measure the complexity of a program’s

source code. It measures the complexity and difficulty of the source code using the number

of distinct operators (n1), the number of distinct operands (n2), the total number of operators

(N1) and the total number of operands (N2). It uses n1, n2, N1 and N2 to calculate the

following measures:

• Program vocabulary, η = η1 + η2

• Program length, N = N1 +N2

• Calculated program length, N̂ = η1 log2 η1 + η2 log2 η2

• Volume, V = N × log2 η

28

• Difficulty, D = η1
2 ×

N2
η2

• Effort, E = D × V

• Programs execution time, T = E
18

• Delivered bug, B = V
3000

The CK metrics was proposed by Chidamber and Kemerer, to help the designers and

managers by providing the inner design details of an OO system [31]. These metrics are cal-

culated by inspecting the relationship among different classes from an OO system. These

are Weighted Methods per Class (WMC), Depth Inheritance Tree (DIT), Number of Chil-

dren (NOC), Coupling Between Object classes (CBO), Response For Class (RFC) and Lack

of Cohesion in Methods (LCOM). These metrics are widely employed in fault prediction

to improve the quality of an OO system. The detail description of these metrics are given

in Chapter 2, Section 2.3.1.

To analyze the impact of the CK metrics in defect prediction [31], Basili et al. per-

formed an experiment using logistic regression to explore the relationship between the CK

metrics and the fault-proneness of OO classes [45]. To perform the experiments, it collects

eight software projects, developed by eight groups of students at University of Maryland

using C++. Results show that the code metrics such as RFC, NOC, DIT are very significant

in defect prediction. The CBO, WMC are significant specially in User Interface (UI) level

classes and the remaining metric LCOM seems to be significant at all cases.

Gyimothy et al. performed a study to analyze how CK metrics can be employed for

the fault-proneness detection of an open source software [46]. For this purpose, it uses

statistical methods, for example, logistic and linear regression and machine learning algo-

rithms such as decision tree and neural network. To perform the experiments, it collects

an open source software, named as Mozilla and its bug report from Bugzilla database [47].

After that, it applies the statistical methods and the machine learning algorithms to the

29

Mozilla. Results show that the CBO is the best metric and WMC, RFC and LOC are the

most significant metrics, while DIT and LCOM are less significant and the NOC seems to

be unimportant in defect prediction.

The usefulness of OO metrics such as CK metric [31], in fault prediction was also in-

vestigated by Zhou et al. [44]. It focuses on how accurately the six CK metrics can predict

defects when taking the fault severity into account. Each of these metrics have been tested

using logistic regression and three machine learning algorithms such as Naive Bayes, Ran-

dom Forest and Nearest Neighbor with generalization (NNge), on a public NASA Dataset

such as KC1. The findings of this experiment show that the CK metrics works well in low

severity of defects rather than the high severity. It also shows that the CBO, WMC, RFC

and LCOM metrics are statistically significant in both high or low fault severity. The DIT

is not significant at any severity level while NOC is only significant at low fault severity.

Pai et al. used Bayesian networks to analyze the effects of CK metrics [31] on the

number of defects and the defect proneness of a class [43]. It uses KC1 project from the

NASA metrics data repository. It builds a Bayesian network where parent nodes are the

CK metrics [31] and child nodes represent the fault content and fault proneness. After the

model has been created, it uses Spearman correlation analysis [7] to check whether the

variables of the CK metrics are independent or not. It shows that SLOC, CBO, WMC and

RFC are the most significant metrics to determine fault content and fault proneness. It

discovers that the correlation coefficients of these metrics such as SLOC, CBO, WMC and

RFC with fault content are 0.56, 0.52, 0.352, and 0.245 respectively. On the other hand,

it also finds that both DIT and NOC are not significant and LCOM seems to be significant

for determining fault content.

Catal investigated 90 software defect prediction papers published between 1990 and

2009 [13]. He categorized those papers and reviewed each paper from the perspectives

of metrics, learning algorithms and Datasets. According to this review, the method level

30

metrics such as Halstead [37] and McCabe [38] metrics are most influential metrics in

defect prediction and also suggests to use class level metrics for the OO programs. It also

shows that the CK metrics is mostly used class level metrics in the defect prediction.

Radjenovic et al. [48] classified 106 papers on SDP according to metrics and context

properties. It concludes the proportions of OO metrics, traditional source code metrics,

and process metrics are 49%, 27%, and 24%, respectively. Among all of metrics, CK [31]

metrics are the most frequently used in defect prediction. The CK metrics has been reported

to be more successful than traditional size and complexity metrics.

Okutan et al. performed an experiment to identify the most effective set of metrics in

the defect prediction [36]. For this purpose, it uses Bayesian network to determine the prob-

abilistic influential relationships among the software code metrics. It introduces two new

code metrics such as Number Of Developers (NOD) and Lack Of Coding Quality (LOCQ).

An experiment has been conducted on the 9 open source Promise Repository Datasets [12].

Results show that RFC, LOC and LOCQ are the most significant and effective metrics and

LCOM, WMC and CBO are less effective metrics in the defect prediction. In addition, it

also shows that NOC and DIT are not effective metrics in defect prediction.

Peng He et al. [35] performed an experiment on 34 releases of 10 open source software

projects to find out the most effective set of code metrics for the defect prediction. It also

identifies the most suitable defect prediction model that works well in both within project

and cross project. The proposed technique uses greedy step wise search algorithm by using

forward or backward approach for finding the best of code metrics. It identifies the top

k-code metrics that are CBO, LOC, RFC, LCOM, CE (Efferent Coupling), NPM, CBM,

WMC, etc. Among all the metrics, it lists CBO, LOC and LCOM as the most significant

and influential metrics in defect prediction. It also shows that the success of any prediction

model depends on the training data.

The above discussions on the software code metrics show the class level metrics, espe-

31

cially CK metrics suite, is the most popular and widely used metrics in the software defect

prediction. Among the CK metrics, the CBO, RFC, LCOM, WMC are seem to be most

significant and NOC and DIT are less significant metrics. The widely used size metrics

LOC and NPM are also significant in defect prediction. Many researches also show that

the other metrics such as CE and CBM have positive impact in defect prediction. So, to

incorporate all the previously investigated experiments, the CK metrics along with LOC

and NPM should be used as selected code metrics for the defect prediction.

In summary, in the first section, all existing clustering techniques are summarized, that

have been already used in the software defect prediction to improve the training procedure.

In the next section, it lists all the most significant code metrics in the context of software

defect prediction. This thesis combines both existing work to improve the accuracy and

performance of the SDP model.

3.3 Overview of the Java Project

As this research is based on the OO software built by Java, this section provides the detail

description of Java project hierarchy to understand the proposed technique. Normally, a

Java project consists of some Packages, Classes, Interfaces, etc. For more clarification, the

inner details of Class and Package are given below since Interfaces are bit like classes. A

Java project hierarchy to represent Project, Packages and Classes is depicted in Figure 3.1.

3.3.1 Class

A class is a building block of all functionality in the OOP. When a class is declared, it

actually creates a new data type which is then used to create object of that type. Thus, a

class is a template for an object, and an object is an instance of a class.

32

Figure 3.1: The software project hierarchy developed by Java

When a class is declared, it holds its functionalities by specifying the data. A class may

contain only data or only some functionalities, but most of real world classes contain both.

A class is declared by using the class keyword. The general form of a class definition in

Java is shown in Source Code 3.1.

Source Code 3.1: The class template in Java

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

33

type methodnameN(parameter-list) {

// body of method

}

}

The data or variables, defined within a class are called instance variables because each

instance of the class contains its own copy of those variables. Thus, the data of one object

is separated and unique from another. The methods and variables defined within a class are

also called members of the class. The instance variables are often used by the method, that

decide how the instance variable will be used.

3.3.2 Package

A package is a grouping of related types providing access protection and namespace man-

agement. The package command declares a place where the classes will be stored. If

package is not declared for a class, the class file will be stored in default package. The

general form of the declaring package statement is:

Package pkg;

Here, pkg is the name of the package. For example, the following statement creates a

package named myPackage.

Package myPackage;

Java uses file system directory just like a computer’s file system directory. More than

one file can have the same package name. The source files that are declared must be

stored in a package. In the case of nested package, a package may contain inner pack-

ages. In that case the package naming structure can be expressed as follows: Package

pkg1[.pkg2[.pkg3]]; A short example of Java package is illustrated in Source Code 3.2 and

Source Code 3.3.

34

Source Code 3.2: The package template in Java

Package myPackage;

class Calculator{

int numberA, numberB;

int Sum(int numberA, int numberB) {

return numberA+ number;

}

int multiply(int numberA, int numberB)) {

return numberA* number;

}

}

Source Code 3.3: The nested package template in Java

// Hello .java

import javax.swing.JApplet;

import java.awt.Graphics;

public class Hello extends JApplet {

public void paintComponent(Graphics g) {

g.drawString("Hello , world !", 65, 95);

}

}

35

3.4 Proposed Package Based Clustering Algorithm

Existing clustering techniques consider a number of source code characteristics, for exam-

ple, source code dependencies or similarities, code metrics, lexical similarity to group the

software into clusters. To the best of author knowledge, no such technique yet considers

both code relationship and similarity to group the source codes. In this thesis, a new Pack-

age Based Clustering (PBC) algorithm is proposed to group the software using the package

information because package holds the related and similar objects in an OO system.

The proposed PBC algorithm groups a software into multiple clusters using related and

similar OO classes. The functionality of PBC can be classified as OO Class Identification,

Cluster Formation and Cluster Validation. These are summarized below.

3.4.1 OO Class Identification

At the beginning of the clustering process, the proposed algorithm lists down all files from

software project and then it identifies potential files that will be considered for constructing

clusters. In this context, the software project is built using Java, so the proposed algorithm

performs searching by considering the file extension with . java.

Software project may contain lots of files such as xml, image, html or other files to

make a software functional. Since the OO file determines the behaviors of software, defect

prediction model finds only OO files to predict defects. Here, the OO class identification

step is performed by searching the files that end with . java because software Datasets used

in this experiment are developed by Java. The overall OO class identification process for

PBC algorithm is illustrated in Algorithm 1.

In this algorithm, it traverse all files using Line 1 and checks the file extension using

Line 2. Then it only stores files having extension with . java using Line 3. This process

stops when no file available for executing works.

36

Algorithm 1 OO class identification
1: for each file do
2: if fileNameExtention = .java then
3: Add file to programClassList
4: end if
5: end for

3.4.2 Package Identification and Cluster formation

After the identification of the OO classes, the PBC finds the package name of each class.

To identify package information of a Java file, it reads the file and retrieves the package

name by matching the pattern structure, for example, package packageName;.

At the end of the identification of the package name, it groups the files into multiple

clusters based on the package name. For each distinct package name, it creates an array

to store the file’s name that resides under the same package. If package name is already

considered, it adds an OO class to the existing array of that package, otherwise it creates

another for the new package to add its OO class. The whole process is performed using

Algorithm 2.

Algorithm 2 Package Identification and Cluster formation
1: for each programClassList do
2: Read OO File
3: Search Each OO File For PackageName
4: if packageName Contains In PackageContainer then
5: Add File To packageName
6: else
7: Add New PackageName To PackageContainer
8: end if
9: end for

In a word, the PBC finds out the package name of each class and lists all package name

from the source codes as shown in Lines 1− 2. If package name is already considered

as cluster, it adds OO class to the existing package using Lines 4− 5, otherwise it creates

another cluster to add OO class as shown in Lines 6−7.

37

3.4.3 Cluster Validation

Packages may contain different number of classes. Some packages may have lots of classes

and other may have only few classes. In this thesis, the SDP model uses eight independent

or explanatory variables, described in Chapter 2, Section 2.3.1. So if number of classes in

a package is less than the explanatory variables used in the prediction model, it would fail

to predict defects. In this case, to make defect prediction model successful, small packages

are combined to form a joint cluster by applying the Algorithm 3.

Algorithm 3 Cluster validation
1: for each Package in packageContainer do
2: if NumberO fClassInPackage <NumberO fVaribale then
3: Add To Joint Cluster
4: end if
5: end for

This part only joins small clusters because the prediction model cannot draw conclusion

from small clusters. For that purpose, it analyzes each newly created cluster and counts

each cluster’s elements. Then it combines small clusters to create joint cluster using Line

3 only when the number of elements in a cluster is less than elements than the number of

independent variables used in the prediction model.

In a nutshell, the PBC algorithm groups a software project based on package informa-

tion as package is a collection of similar and related classes. The whole PBC algorithm is

illustrated in the Algorithm 4.

3.5 Experimental Setup and Result Analysis

In this section, the experimental environment setup and the results analysis of the PBC

along with BorderFlow clustering algorithms are analyzed. This section presents the im-

plementation details of the proposed PBC, Dataset collection, used BorderFlow clustering

38

Algorithm 4 Package based Clustering (PBC)

Require: Package Container C = 0, Package Name N = 0, Program Class List L= 0, Num-
ber Of Varibale V , PackageSize P S= 0, File Name F , Number Of Class In Package,
N P .

1: for each f ile do
2: if F ends with . java then
3: Add file to L
4: end if
5: end for
6: for each L do
7: Read program file
8: Search each OO file for N
9: if N contains in C then

10: Add file to N
11: else
12: Add new N To C
13: end if
14: end for
15: for each package in C do
16: if N P <V then
17: Add to joint cluster
18: end if
19: end for

39

technique. Finally, the effectiveness of the proposed PBC is measured by taking the mean,

variance and standard deviation of absolute residuals.

3.5.1 Software Defect Prediction Model

Software defect prediction model predicts the defects of a class by analyzing the rela-

tionships between software code metrics and software defects. In this thesis, the linear

regression model is selected as the prediction model to predict defects of a particular class

because the relationship among code metrics’ properties is linear [7, 49]. The detail de-

scription of linear regression model is already described in Chapter 2, Section 2.2.1.

The linear regression model uses a set of independent variables which are WMC, CBO,

DIT, LCOM, LOC, NPM, RFC, NOC (see Chapter 2, Section 2.3.1 for detail description)

to predict the dependent variable which is defect. The linear equation used by the linear

regression model is given in Equation 3.2 [7].

Y = b1x1 +b2x2 +b3x3 +b4x4 +b5x5 +b6x6 +b7x7 +b8x8 + c (3.2)

where,

• Y is the number of defects in an OO class

• x1...x8 are the independent variables which are CBO, LCOM, DIT, RFC, WMC,

LOC, NPM and NOC

• b1...b8 are the coefficient values of those independent variables respectively

• c is the value of Y when all independent variables are 0.

In this thesis, similar as Juban et al. [50], 80% data is used to train the prediction model

and the remaining data is used to assess the performance and accuracy of the model.

40

3.5.2 Prediction Validation

To evaluate the quality of the defect prediction model achieved by the linear regression

analysis, the Mean (M), Median (Md) and Standard Deviation (StD) of Absolute Residuals

(AR) are computed. The AR value, widely used in the performance measure of the linear

regression model [3, 51], is the difference between predicted defects and actual defects of

a particular OO class. The smaller value of AR shows the better accuracy of the prediction

model [3].

To compare the proposed method PBC with BorderFlow in terms of defect prediction

accuracy, the error is computed by using the Equation 3.3 [3]. The error value shows

how much better or worse the proposed dimension reduction technique is in the context of

software defect prediction [3].

error =
MAR(PBC)−MAR(BorderFlow)

StDAR(BorderFlow)
(3.3)

where,

• MAR(PBC) is the mean value of AR using PBC

• MAR(BorderFlow) is the mean value of AR using BorderFlow

• StDAR(BorderFlow) is the standard deviation of AR using BorderFlow

The error value is the ration of two techniques’ mean difference and the standard de-

viation of the technique to which another technique is compared. As a result, it assumes

values in between -1 and +1. For a software release, negative values of error indicate the

proposed approach PBC outperforms BorderFlow technique, while a positive value indi-

cates the BorderFlow outperforms the proposed PBC.

41

3.5.3 Existing Clustering Algorithms

For software defect prediction, many prominent clustering algorithms have been used to

group software into multiple clusters. To validate the new clustering algorithm, the com-

parison needs to be accomplished between the proposed and existing clustering techniques.

In this section, the existing clustering algorithm that is considered to compare results with

the proposed clustering algorithm is described below.

BorderFlow

BorderFlow clustering algorithm is successfully implemented in [3, 52] to group the

software into multiple clusters. It treats the whole software as a collection of nodes to

represent the whole software as a graph. It maximizes the flow from the border of each

cluster to the nodes within the cluster, while minimizing the flow from cluster to the nodes

outside. In this context, the goal of this algorithm is to find groups of tightly coupled classes

which are likely to implement a set of related features.

Let, a cluster X, is a subset of V, b(X) is the set of border nodes of X, and n(X) is

a function used to identify the set of direct neighbors of X. Ω is a function that assigns

the total number of the edges such as dependencies from a subset to another subsets using

Equation 3.4. Then BorderFlow ratio can be measured by using Equation 3.5.

Ω(X ,Y) = ∑e(ci,c j)|ciεXandc jεY (3.4)

F(x) =
Ω(b(X),X)

Ω(b(X),n(X))
(3.5)

To find group of similar and related classes, this algorithm iteratively selects OO classes

known as nodes from n(X) and inserts OO classes in X until F(X) is maximized. The

iterative selection of classes ends when n(X) equals to 0 for each set of classes.

42

3.5.4 Tools and Technologies

In this thesis, the SDP model, the proposed PBC and existing BorderFLow clustering tech-

nique have been implemented by using the R [53], C# and Java programming languages

respectively. To run R script, Java and C# code, the open source software RStudio, Eclipse

and Visual Studio have been used in this experiment [54]. The short description of R,

RStudio, Java, Eclipse, C# and Visual Studio are given below.

R: It is a programming language for statistical computing and graphics [53]. It is widely

used among statisticians and data miners for data analysis. In this thesis, R has been se-

lected to implement the selected linear regression model because it is open source and easy

to implement.

RStudio: To run R script, the open source software RStudio has been used [54]. It

is a free and open source integrated development environment for R, written by C++ [54].

RStudio is available in two editions: RStudio Desktop, where the program is run locally.and

RStudio Server, which allows accessing RStudio using a web browser while it is running

on a remote Linux server. In this experiment, RStudio Desktop version has been used.

Java: It is a OOP language for building application software. In this thesis, the Border-

Flow clustering algorithm is developed using Java.

Eclipse: It is an Integrated Development Environment (IDE) for Java. It contains a base

workspace and an extensible plug-in system for customizing the environment. It is written

mostly in Java and it can be used to develop applications. In this thesis, the BorderFlow

clustering algorithm is performed on the available software using Eclipse.

C#: It is modern, high-level programming language for building apps using Visual

Studio and the .NET Framework [55, 56]. It is designed to be simple, powerful, type-safe

and OO. In this thesis, the proposed PBC is implemented using C#.

Visual Studio: It is an Integrated Development Environment (IDE) by Microsoft for

developing computer programs for Microsoft Windows, as well as web sites, web applica-

43

tions and web services. In this thesis, the implementation of proposed PBC is performed

on the collected Dataset by the help of Visual Studio version 12.

3.5.5 Dataset Collection

The proposed PBC for software defect prediction has been experimented on 8 releases of

2 open source software built by Java. All of those defect Datasets have been downloaded

from the Promise Repository [12]. Those Datasets contain the corresponding software

code metrics and defect information which are usually used by the prediction model to

predict defects for future releases. The source code for Ant and Xalan are downloaded

from Apache Repository [57] which are used by PBC and BorderFlow to find clusters from

source code. The short description of those Dataset’s software are given below:

Ant: It is a library and command line tool for automating software build processes. In

this experiment, the Ant releases 1.3 to 1.7 have been selected because its Dataset is widely

available and it is developed by Java [12, 57].

Xalan: It is an XSLT processor for transforming XML documents to HTML, text or

other XML document types. The available releases from Xalan 2.4 to 2.7 have been con-

sidered here [12, 57].

3.5.6 Implementation Details

To perform the experiment, the prediction model using linear regression model, described

in Section 3.5.1, is considered as the prediction model here. This prediction model is

implemented by using R programming language. This model is also validated using the

validation apporach, discussed in Section 3.5.2.

The proposed clustering method PBC is based on the package information for the

44

Table 3.1: The mean, median and standard deviation of Absolute Residual for PBC

Dataset
BorderFlow Entire System PBC

MAR MdAR StDev MAR MdAR StDev MAR MdAR StDev
Ant-1.7 0.563 0.205 0.789 0.627 0.205 0.933 0.492 0.186 0.861
Ant-1.5 0.117 0.084 0.197 0.260 0.121 0.287 0.199 0.106 0.242
Ant-1.4 0.421 0.325 0.410 0.484 0.493 0.337 0.213 0.213 0.137
Ant-1.3 0.176 0.078 0.340 0.601 0.164 0.794 0.581 0.328 0.799

Xalan-2.7 1.369 1.300 0.391 0.521 0.502 0.404 0.433 0.259 0.498
Xalan-2.6 0.770 0.429 1.062 0.987 0.513 1.103 0.685 0.510 0.645
Xalan-2.5 0.664 0.523 0.568 0.964 0.520 1.543 0.848 0.613 0.873
Xalan-2.4 0.182 0.117 0.358 0.765 0.136 2.137 0.312 0.149 0.502

source code developed using Java, is implemented using C#. The BorderFlow cluster-

ing algorithm which finds clusters by maximizing the flow from the border of each cluster

to the nodes within the cluster and minimizing the flow from cluster to the nodes outside,

is implemented using Java as described in [3].

3.5.7 Result Analysis

This section presents the result analysis of the SDP model using the proposed PBC com-

pared to BorderFlow algorithm and the entire system that considers no clustering technique.

The result of the SDP model using different clustering approaches are compared by using

the MAR, MdAR and StDAR of the Absolute Residuals (AR). To evaluate the performance

of the SDP model using PBC compared to BorderFlow clustering, both PBC and Border-

Flow were applied to the Dataset (discussed in Section 3.5.5) to form clusters. Finally,

results of proposed PBC are analyzed using the ARs generated from the prediction model.

Table 3.1 highlights the Comparison of MAR, MdAR and StDAR of AR values to

identify which method produces smaller AR values. As the smaller AR values represent

the better defect prediction model, it is clear that the SDP model considering BorderFlow

and PBC algorithms perform better than the entire system in all cases but inconsistencies

45

Table 3.2: The error values of Dataset

Dataset Error
Ant-1.7 -8.9%
Ant-1.5 41.6%
Ant-1.4 -50.585
Ant-1.3 118.8%
Xalan-2.7 -238.93%
Xalan-2.6 -7.9%
Xalan-2.5 32.3%
Xalan-2.4 36.3%

exist in AR values produced by the SDP model considering PBC compared to BorderFlow.

In some cases, for example Ant-1.7, the SDP model considering PBC performs better than

BorderFlow, and for Ant-1.5, the SDP model considering BorderFlow performs better than

PBC. From the experimental results, it can be concluded that PBC works well when the

package information can accurately group the source codes. In contrary, BorderFlow works

well when each cluster get sufficient number of objects so that SDP model gets proper

Dataset for training purpose.

The error value shows that how much better or worse the SDP model is compared to

other. The error values are calculated from MAR and StDAR values using Equation 3.3 (see

Section 3.5.2 for detail description). Usually, the negative error value shows high accuracy

and positive value show low accuracy of the SDP model [3]. Since both clustering method

perform better than entire system, it is now only needed to show which clustering technique

is better in software defect prediction. The error values of PBC is calculated considering

only PBC and BorderFlow by applying the Equation 3.3. Table 3.2 summarizes all error

values computed by using Equation 3.3 for the PBC clustering technique.

The error values considering the clustering technique PBC and BorderFlow are summa-

rized in Figure 3.2. In this figure, all points under the horizontal line represent the software

releases; for these the SDP model has better prediction accuracy. Since, the negative value

means that the clustering methods using PBC outperform the clustering methods using

46

Figure 3.2: The distribution of error values by PBC

BorderFlow. In this figure, 4 Datasets which are Ant-1.5, Ant-1.3, Xalan-2.5 and Xalan-

2.4 have positive error values, that means PBC fails to perform better in these Dataset. For

Datasets Ant-1.7, Ant-1.4, Xalan-2.6 and Xalan-2.7, the error values are negative which

mean PBC performs better in those Datasets because of their proper structure in the devel-

opment time.

3.6 Conclusion

The proposed clustering technique named as PBC is based on the related and similar OO

classes that form packages in java programing convention. It uses textual analysis on source

codes to identify OO classes from a software project and lists out those files. To form

clusters, it extracts the package information from each OO class by searching the package

47

name. In special cases, if the number of OO classes of a cluster is smaller than the number

of independent variables used in the prediction model, it combines small clusters to enable

those for the prediction model. Finally the linear regression model considering PBC is

conducted on Ant and Xalan.

Results show that the software defect prediction using the proposed PBC outperforms

the prediction models considering the entire system because PBC uses source code simi-

larities and relationships to group the software. For BorderFlow algorithm, the PBC also

performs better in some cases. In this context, the prediction model considering PBC per-

forms better in 4 Dataset out of 8 than the prediction models built considering BorderFlow.

The next chapter discusses about the grouping of source code based on the similarity

analysis using dimension reduction approach considering the impact of code metrics to

number of defects in an OO class to enable the software engineering Dataset for distance

based clustering algorithms.

48

Chapter 4

Similarity Analysis by Reducing the Code Metrics’
Dimension

This chapter discusses about the new proposed dimensions reduction technique considering

impact analysis of code metrics to defects for the software engineering Dataset. It also ex-

plains the used prediction model, selected Dataset, experimental setup and implementation

details together with the result analysis of the proposed technique.

4.1 Introduction

Source code similarity analysis by grouping the software into multiple clusters can improve

the performance and accuracy of a SDP model. The effectiveness of a SDP model depends

on the learning procedure because better learning increases the prediction accuracy of a

SDP model. Usually, the software engineering Dataset such as Promise Dataset [12] con-

tains lots of variabilities (for example, heterogeneity among the code metrics), those always

hinder the learning procedure of a SDP model. To minimize those variabilities, the hetero-

geneity among the Dataset needs to be minimum. For that purpose, multiple clustering

algorithms can be applied on the Dataset to group heterogeneous data together. Besides

those variablities, the Datasets are normally multidimensional because each entry contains

lots of code metrics attributes such as CBO, LCOM, RFC, etc. Those make the Dataset

multidimensional. Due to the multidimensionality, clustering algorithms may not always

perform well. So, if it is possible to minimize the dimensions of the software engineering

Dataset based on their similarities, it will definitely help the clustering algorithms.

In any correlation analysis, the dependent variable, for example, number of defects in

an OO class, depends on a set of independent variables, for example, CBO, LOC, etc. If

49

the dimensions of the Dataset are reduced based on the correlation of independent variables

to the dependent variable, the new Dataset should get close values for similar objects. The

independent variable values can be reduced to two latent variables based on their positive

and negative impacts on the dependent variable (for example, defects). In this course, the

similarity between objects can be measured based on their Cartesian distance, if the positive

and negative latent variables (that is, impact) are plotted in a two dimensional plane.

Software engineering Dataset can be reduced by using various dimension reduction

techniques such as Principal Component Analysis (PCA), Factor Analysis (FA), etc. The

PCA uses covariance matrix, its eigenvector and eigenvalue for reducing the dimensions.

The PCA technique works well for the linear Dataset, but for the nonlinear Dataset and

the Dataset having lots of uncorrelated attributes, it cannot reduce the dimensions properly.

On the other hand, FA is considered the extension of the PCA. It uses correlation matrix

to reduce the Dataset dimensions and the success of FA depends on the choice of the num-

ber of factors. Nagappan et al. used PCA to select the best set of attributes for predicting

the failure proneness of the software using the code churn and all dependency informa-

tion [58–60]. As PCA sometimes causes loss of information, the failure of PCA may

decrease the performance of the technique. Zimmermenn et al. performed an experiment

for predicting defects using network analysis of dependency graphs among various pieces

of codes [61]. For that purpose, it uses PCA to select the best set of attributes by reducing

the multicollinearity among the Dataset. Since it uses PCA, it also inherits the problems

of PCA mentioned above. Menzies et al. used PCA to reduce the multicollinearity of the

Dataset for the SDP model [5, 6]. It plots the Dataset considering the greatest variability

component in x-axis and the next component in y-axis. It then applies the WHERE cluster-

ing algorithm to find the similar objects from the Dataset. Although, it uses only two most

significant PCA components for plotting the Dataset, it does not clarify whether only two

components can describe all the variances of the Dataset or not.

50

In this thesis, source code Similarity Analysis by Reducing the Code mertics’ dimen-

sion (SARCM) is proposed based on the impact of the independent variables to the de-

pendent variable. Where the independent variables are CBO, LCOM, RFC, WMC, etc.

(described in section 2.3.1) and dependent variable is the number of defects in an OO class.

To identify the relationship between the independent and dependent variable, the regres-

sion analysis is applied to the available Dataset to calculate the coefficient values. The

coefficient values determine whether the independent variables are positively or negatively

significant to the dependent variable. Then the proportionate impact of each independent

variable on the dependent variable is calculated by multiplying the coefficient value to the

corresponding variable value. Finally, the values that positively significant to the dependent

variable are summed and assigned to one variable named as PosImpactValue and the values

that are negatively significant to the dependent variable are summed to another variable

named as NegImpactValue. Now the similarity score between two objects (in terms of code

metrics) can be measured by the distance where PosImpactValue and NegImpactValue are

considered as x and y respectively. This Dataset is easily plotable to the two dimensional

plane considering PosImpactValue as x-axis and NegImpactValue as y-axis.

As the dimension of the Dataset is reduced based on the significance of independent

variables to the dependent variable, the similar objects become closer to each other in the

two dimensional plane. Now different distance based clustering technique can accurately

identify clusters from the software engineering Dataset with similar properties.

To show the importance and effectiveness of the proposed technique, an experiment

has been performed on some open source software such as jEdit, Ant, Xalan, etc. from the

Promise Repository [12]. The proposed technique reduces the dimensions of the Dataset for

the different distance based clustering algorithms. The clustering algorithms such as DB-

SCAN [62], WHERE clustering [5,6] have been applied to the dimension reduced Dataset.

Then the linear regression model has been applied to each cluster to find predicted de-

51

fects. To compare the results of the dimension reduction approach, these two clustering

approaches were also applied to another dimension reduced Dataset by PCA. Finally, re-

sults are compared to show how dimension reduction technique affects the clustering and

the clustering affects the defect prediction model.

Results show that the proposed dimension reduction technique using the coefficient

values can successfully assign new values to each entry based on the significance of in-

dependent variables to dependent variable. As a result, both DBSCAN [62] and WHERE

clustering techniques [5, 6] using SARCM outperform PCA in the defect prediction be-

cause PCA may lose some information. Experimental results show that the SDP model

outperforms in 14 Datasets out of 17, divided by the DBSCAN and WHERE clustering

using SARCM technique.

4.2 Related Work

Due to the multidimensionality of the software engineering Dataset, the distance based

clustering algorithms may not work properly. To reduce the multidimensionality of the

Dataset, there exists lots of dimension reduction approaches in the literature [63,64]. Many

researches in SDP have already used those dimension reduction approaches successfully to

reduce the dimensions of the Dataset. In this section, the widely used dimension reduction

techniques and their usage in SDP are described.

4.2.1 Existing Dimension Reduction Techniques

Dimension Reduction (DR) is a process of reducing a set of variables into minimum number

of variables that can explain the data perfectly. The goal of this approach is to find out a

set of correlated variables to form a new smaller set of latent variables with minimum loss

52

of information [49]. There are lots of ways to perform DR in a Dataset such as Principal

Component Analysis (PCA) [63, 65, 66], Feature Selection (FA) [64, 67], etc. Some of the

DR techniques are outlined below.

Principal Component Analysis

The Principal Component Analysis (PCA) uses an orthogonal transformation to convert a

set of correlated observations into a set of linearly uncorrelated variables called principal

components [63, 65, 66]. It reduces the dimensions of a Dataset into minimum number of

dimensions that can describe all the varibality of the data. To reduce the dimensions, it first

subtract the mean of each dimension from the Dataset and generates covariance matrix of

the Dataset. Then it calculates the eigenvector and eigenvalue of the covariance matrix.

Finally, it chooses components and feature vector from the eigenvalue and eigenvector.

Normally, the total number of principal component is less than or equal to the number of

original dimensions of the Dataset. The first principal component is the linear combina-

tion of n-variables that has maximum variance, so it gives as much variation in the data as

possible. Just like first component, the second principal component is also the linear com-

bination of n-variables maximizing the remaining variation as possible, with the constraint

that the correlation between the first and second component is 0. Like first and second

component, the i-th principal component maximizes the remaining variation of the data.

For the software engineering Dataset like Promise Repository [12], where each and

every attributes are significant to the dependent variable (for example, the impact of CBO,

LCOM, LOC, etc.) to the defect, selecting minimum number of components may cause

a considerable loss of information. Sometimes PCA analysis selects lots of features to

maximize the cumulative variance which also may impede the SDP model because more

features make the training process difficult.

53

Factor Analysis

The Factor Analysis (FA), another way of reducing the dimension of a Dataset [64, 67], is

considered as the extension of the PCA technique. It is based on the correlation matrix of

the variables whereas PCA uses covariance matrix. It produces latent variables by joining

a set of observed variables. To produce latent variables, it uses the available data, common

factors and mean of the data. Then it produces the factor model just like regression equa-

tion, to produce factor loadings. Finally it transforms the factors into latent variables to

minimize the dimensions.

The most critical and important decision for FA is the selection of the number of com-

mon factors (m). When the data is normally distributed, the selection of m can easily be

measured, but when the number of variables and the sample size is large, the selection of

m becomes difficult. For the software engineering Dataset, where attributes are related to

each other, the correlation analysis may produce lots of factors and the number of factors

depend on the choice of measuring the correlation. The change of correlation measure may

change the number of factors. So, multiple interpretation may be possible for FA.

Isomap

Isomap is a dimension reduction method for the nonlinear Dataset [68]. It performs low-

dimensional embedding based on the pairwise distance between data points, generally mea-

sured by using the Euclidean distance [69]. There are four important steps of the Isomap.

These are given below:

• Determine the neighbors of each point.

• Construct a neighborhood graph.

• Compute shortest path between two nodes using Dijkstra’s algorithm.

54

• Compute lower-dimensional embedding.

The connectivity of any point is defined by its nearest k Euclidean neighbors in the

neighborhood graph [69]. The success of this method depends on the value of k. If k is too

large, it creates the short-circuit errors and if the k is too small, the graph may become too

sparse. For software engineering Dataset, where Dataset is not nonlinear all the time. As a

result, it is not applicable to the software engineering Dataset having linearity.

4.2.2 Dimensions Reduction in Software Defect Prediction

Dimensions Reduction techniques reduce unimportant and insignificant features from a

Dataset. Although, the Dataset having more features contains lots of information, it is

difficult to extract information from more features. As a result, the machine learning or

statistical models cannot draw conclusions from the data having more features. It also

hinders the training process of the machine learning or statistical models. So, it is important

to reduce the dimensions of the Dataset by preserving all the variances for the machine

learning or statistical models. Many researches in software defect prediction have already

used DR techniques. Most prominent of those researches are outlined below.

Nagappan et al. performed an experiment on Windows 2003 to identify the relationship

among software dependencies, churn measures and post-release failures [58, 60]. It inte-

grates the call dependencies, data dependencies, architectural dependencies to investigate

the propagation of churn across the system. The code churn shows the amount of code

change of a software over time. To fit the Dataset into the prediction model, it reduces

the multicollinearity among the metrics by using the PCA technique. Then, it uses logistic

regression to analyze the software dependence ratio and churn measures as early indica-

tors of failure proneness of a software. Results show that the dependence ratio and churn

measure can predict the post release failures and failure-proneness of the binaries. As PCA

55

analysis selects minimum number of principal components, it may ignore some impact of

dependency information and code churn measure. Sometimes, it may select more features

to increase the cumulative variance which also may hinder the prediction process of the

SDP model, because more features hamper the training process and make the information

extraction difficult.

In another experiment, Nagappan et al. proposed a failure prediction model by in-

vestigating the relationship between failure-prone software entities and their complexity

measures [59]. It uses linear regression analysis as the predictor models for identifying

failure prone components. It performed an empirical study on five Microsoft software sys-

tems. It shows that multicollinearity exists among the complexity metrics and there is no

single set of complexity metrics that could act as a best defect predictor. To overcome the

multicollinearity problem, it uses PCA to select minimum numbers of metrics for which

the cumulative variance is greater than 96%. After selecting the best set of metrics, it uses

these properties to identify the relation among complexity metrics and failure-proneness.

Results show that complexity metrics can successfully predict post release defects. Al-

though, the prediction model using PCA works well, but this technique may select lots of

features until the cumulative frequencies is greater than 96%. These lots of features may

eventually hinder the prediction process of the SDP model because more features hinders

the training process.

Zimmermen et al. proposed a defect prediction model using network analysis of depen-

dency graphs among various pieces of code [61]. It uses multiple linear regression analysis

as the prediction model for predicting the critical binaries. It uses PCA to reduce the mul-

ticollinearity among the Dataset and to select the best set of attributes from the Dataset.

It selects only those principal components, for which the cumulative variance is greater

than 95%. To show effectiveness of the proposed method, it performed an experiment on

Windows Server 2003 and results show that complexity metrics and network measures can

56

predict 30% and 60% of these critical binaries respectively. As it uses PCA, it may loss

small amount of information and may suffer the same problems mentioned above.

Ceylan et al. proposed a defect prediction model using Decision Tree, Multi-Layer

Perceptron and radial basis functions to predict the number of total defects per module or

function [70]. Before applying these prediction model, it uses PCA to the Dataset to remove

multicollinearity from the Dataset by eliminating the correlations among the attributes. The

experiment has been carried out on some real life software projects collected from three big

software companies in Turkey. Results show that the proposed prediction model improves

the performance approximately 32.61% for Company-A and 60% for other two companies.

Then it uses mean square error approximation to show the effectiveness of the proposed

technique. As it uses PCA, so it also inherits the same problems mentioned above.

Turhan et al. proposed a feature selection model to improve the accuracy of the defect

prediction model [71]. It shows the widely used feature selection technique, PCA cannot

work in nonlineaer Dataset. To perform feature selection in nonlinear Dataset, it suggested

to use Isomap [68]. Hence, the Dataset contains both linear and nonlinear Data, this paper

uses both linear and nonlinear feature extraction methods in order to combine information

from multiple features. To evaluate the effectiveness of the proposed feature extraction

method, several experiments were conducted on the different software projects from NASA

repository [29]. This research advices that one should not seek for globally best subset of

features, rather to focus on building predictors that combines information from multiple

features. It also suggested to use balanced combination of the features before selecting the

best set of attributes for the SDP model. Although it uses the combination of PCA and

Isomap, it does not mention whether the combination of PCA and Isomap perform well or

not, and how much information it losses after applying the combination.

Menzies et al. proposed a software defect prediction model that learns from software

clusters with similar characteristics to resolve the variabilities [5,6]. It performs clustering

57

of the source code by using WHERE clustering technique that considers only the code met-

rics and learning treatment using pairs of neighboring clusters. To perform the WHERE

clustering in the Dataset, the dimensions of the Dataset are needed to be reduced. It per-

forms PCA to reduce the dimensions of the Dataset. It plots the Dataset considering the

most variability component in x-axis and the next component in y-axis. Then, it applies

the WHERE clustering algorithm to find out the similar objects. The limitation of this ex-

periment is the consideration of only two PCA’s components to plot the Dataset without

taking into account others. It does not also mention that whether these two components can

describe all the variances or not. As a result, the clustering algorithms considering only

two PCA’s components may not group the Dataset based on their similarity properly.

For the software defect prediction, sometimes the Dataset needs to be divided into mul-

tiple clusters based on their similarity to train the SDP model properly. As the Dataset are

multidimensional, the distance based clustering cannot perform well until the dimension is

reduced. The existing dimension reduction techniques such as PCA can reduce the dimen-

sions, but when two components are taken into account by avoiding the other components,

that causes a great loss of information. So, further research are needed to accomplish to

represent the whole Dataset by using only two latent variables so that the distance based

clustering algorithms can work well in the context of software defect prediction.

4.3 Proposed Methodology

To segregate the similar OO classes, different clustering algorithms might be applied to the

software Dataset to find groups from these. Due to the multidimensionality of the software

Dataset, different distance based clustering algorithms cannot work properly. So, to apply

different distance based clustering algorithms on the existing Dataset, the dimensions of

the Dataset are needed to be reduced. In this dissertation, the dimensions of the Dataset

58

are reduced based on the significance of independent variables (that is code metrics) to the

dependent variable (that is defect). The proposed dimension reduction approach named as

SARCM is described below.

4.3.1 Dimension Reduction Approach

In this thesis, the dimension of the software engineering Dataset is reduced by identifying

the significance of each of the dimension, for example, CBO, RFC, etc. The significance is

measured by the coefficient values of the independent variables to the dependent variable.

In this context, the independent variables are CBO, LCOM, RFC, WMC, DIT, LOC, NOC

and NPM, and the dependent variable is the number of defects in an OO class. If the di-

mension reduction technique reduces the dimensions based on the coefficient values of the

independent variables, the produced latent variable values will be based on the independent

variables’ significance to the dependent variables.

The significance of one independent variable to the dependent variable can easily be

computed by using regression analysis [7,72]. The regression analysis uses a mathematical

equation to show how the value of the dependent variable changes when any one of the in-

dependent variables is varied. The relationship of independent variables and the dependent

variable can be illustrated by using Equaltion 4.1.

Y = b1x1 +b2x2 +b3x3 + ...+bnxn + c (4.1)

Here, Y is the dependent variable, b1...bn are the coefficient values of independent vari-

ables, x1...xn respectively, those coefficient values represent the amount variable Y changes

when variable xi changes 1 unit and c is the intercept point of y-axis that shows the value

of dependent variable when all x’s are zero.

Since the used Dataset contains eight independent variables, the Equation 4.1 is mod-

59

ified to Equation 4.2 for the Dataset. In this context, the regression coefficient shows the

significance of CBO, LCOM, DIT, RFC, WMC, LOC, NPM and NOC to the number of

defects in an OO class. To find the regression coefficient, this approach uses the Equation

4.2 as the regression model. Then, this equation is performed on the existing Dataset to

find the coefficient value of each independent variable.

Y = b1x1 +b2x2 +b3x3 +b4x4 +b5x5 +b6x6 +b7x7 +b8x8 + c (4.2)

where,

• Y is the number of defects in an OO class

• x1...x8 are the independent variables such as CBO, LCOM, DIT, RFC, WMC, LOC,

NPM and NOC

• b1...b8 are the coefficient values of those independent variables respectively

• c is the value of Y when all independent variables are 0.

The coefficient value is a measure of linear association between the variables. The co-

efficient values can be positive or negative based on the impact of the independent variables

to the dependent variable. A coefficient value -

• greater than 0 indicates that two variables are positively related.

• less than 0 indicates that two variables are negatively related.

• 0 indicates that there is no linear relationship between the two variables.

To reduce the dimension of the Dataset, the coefficient values are then multiplied to

the corresponding variable values. Then the positive and negative values are summed to

produce two latent variables, named as PosImpactValue and NegImpactValue respectively

60

for each row in the Dataset. The PosImpactValue and NegImpactValue are calculated by

using the Equation 4.3 and 4.4 respectively. As a result, the final Dataset contains only two

values for each entry. The whole procedure to reduce the dimensions of a Dataset is given

in Algorithm 5.

PosImpactValue = ∑bixi (4.3)

where bi is positive.

NegImpactValue = ∑bixi (4.4)

where bi is negative.

Algorithm 5 Dimension Reduction Algorithm

Require: Dataset D, Coefficient Value b, Independent Variable Value X , eps value ε
1: Select a linear regression equation, Y = b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6x6 +

b7x7 +b8x8 + c
2: Apply the selected equation on the available D
3: Compute b for each independent variable
4: for each D do
5: Set value for P = 0, N = 0
6: for each b in each D do
7: Select b for the selected variable
8: if b > 0 then
9: X ← X ×b

10: P ← P +X
11: else
12: X ← X ×b
13: N ←N +X
14: N ←N × (−1)
15: end if
16: end for
17: Set value P ,N for the selected entry.
18: end for

In the very beginning of this process, a regression equation such as Equation 4.2 is cho-

sen and applied to the existing available Dataset to find the regression coefficients bi using

Lines 1− 3. These regression coefficient values might be positive or negative depending

on their impacts to the dependent variable.

61

Now it iterates to each entry of the Dataset to minimize the dimension by using the

Line 4. After selecting each entry, it now iterates for each coefficient value of independent

variables by using Line 6. To store the values of the two latent variables, both variables

named as P and N are initialized by 0.

The significance of each of the independent variables are checked by using Line 6.

If the coefficient value has positive impact, this selected coefficient value is multiplied

to the corresponding variable value by using Lines 8− 9. The final value is stored to

a latent variable P . When the coefficient value of a variable is negative, it means the

corresponding variable has negative impact to the dependent variable. Then the negative

coefficient value is multiplied to the corresponding variable value by using the Line 11.

The new produced value is summed to another latent variable N by using the Line 12. To

avoid the negative sign from the N , this value is multiplied to−1 by using Line 13. Finally,

the new dimension value for the selected entry is updated by using Line 17.

4.3.2 Measuring the Similarity of Objects

The proposed dimension reduction technique named as SARCM reduces the dimensions to

two, based on the positive and negative significance of independent variables to the depen-

dent variable. As a result, the similar objects get closer values which are PosImpactValue

and NegImpactValue in the dimension reduced Dataset. So, the similarity among the ob-

jects can be analyzed using their Cartesian distances in two dimensional plane.

To measure the similarity among the objects, the dimensions of the Dataset is reduced to

two latent variables such as PosImpactValue and NegImpactValue which show the positive

and negative impact of independent variables to the dependent variable respectively. When

the new Dataset is plotted considering the PosImpactValue as x-axis and NegImpactValue

as y-axis, it distributes the OO classes in such a way that similar classes become closer

62

Figure 4.1: The distribution of OO classes in the dimesion reduced Dataset by SARCM for
Ant-1.6

to each others and dissimilar classes are farther from each others. In the two dimensional

plane, the defective classes are far from y-axis and the non-defective classes are close to

y-axis. The dimension reduced Dataset for Ant-1.6 by the proposed technique is illustrated

in Figure 4.1.

Figure 4.1 shows the distribution of defective and non-defective classes by using the red

and blue circle respectively for the Ant-1.6 project. The goal of this dimension reduction

technique is to reduce the dimensions of the Dataset and assign new values based on their

significance to the defect. Lets assume a straight line K, from origin (0,0) that divides

all objects in the two dimensional plane. In this figure, it is clear that, the density of

the red circle is high in the area covered by K and x-axis, because the PosImpactValue is

high and NegImpactValue is low for those objects. On the other hand, the density of blue

circle is high in the area covered by K and y-axis, because the PosImpactValue is low and

63

Figure 4.2: The distribution of OO classes in the dimesion reduced Dataset by PCA for
Ant-1.6

NegImpactValue is high for those objects. It is now clear that the position of each object

in Figure 4.1 corroborates the assumption that the similar objects get closer values in the

dimension reduced Dataset and objects are distributed based on their defects.

For the same Ant-1.6, the dimension reduced Dataset by PCA is illustrated in Figure

4.2. In this figure, both defective, represented by the red circle, and non-defective classes,

represented by blue circle, are mixed with each other because this technique does not reduce

the dimension based on the significance of independent to dependent variable. As a result,

similar objects are not closer to each other in this dimension reduced Dataset by PCA.

In terms of distribution of OO class, there exists a significant difference between Figure

4.1 and Figure 4.2. In Figure 4.1, different OO classes create cumulative straight line

because SARCM technique reduces the dimension based on the cumulative impact of the

64

independent variables to dependent variable. In contrary, in Figure 4.2, all OO classes form

a line, parallel to x-axis because the value of each entry in the most significant principal

component is closer to each others.

As the new dimension reduced Dataset contains closer value for similar objects, the new

dimension reduced Dataset can be divided into multiple clusters considering their distance

measure. For that purpose, the density based clustering algorithm such as DBSCAN can be

a better option. It is also needed to mention that DBSCAN is not the only solution to this

approach. Any distance based clustering algorithm can be applied to find clusters from the

dimension reduced Dataset. The DBSCAN is considered here, because it is not yet used in

SDP. The brief description of the DBSCAN is given below.

DBSCAN

DBSCAN finds clusters from a set of points by measuring their reachability distance. It is a

density based clustering approach which groups points that are situated within the density

reachability distance, marking as outliers points that lie out of the density reachability

distance [62, 73, 74].

In this thesis, as shown above, the dimension reduced Dataset can be plotted in the two

dimensional plane where each point represents as an object of an OO system. Lets assume,

there exists n objects such as p1, p2 ... pn. Now the DBSCAN can be used to find clusters

from these objects by checking their density reachability distance. If the maximum density

reachability distance for a Dataset is d, an object p1 is called density reachable to another

object pn, if and only if, the distance from p1 to p2 is equal or less than d, in the same way,

the distance from p2 to p3 is equal or less than d and so on. Finally, the distance between

pn−1 and pn is also less than or equal to d. Then it can be said that Pn is density reachable

from p1. Then it groups objects that are density reachable to one another, marking as

65

outliers points that lie alone in low-density regions. The clusters, generated by DBSCAN,

satisfy the following two properties [62, 73, 74]:

1. All objects within a cluster are mutually density reachable.

2. If an object is density reachable from any object of the cluster, it is part of the cluster
as well.

DBSCAN algorithm requires two parameters to classify the Dataset into different clus-

ters. These parameters are:

1. Density reachability distance, generally known as eps value, denoted by ε

2. The minimum number of points required to form a dense region, denoted by minPts

Density Reachability Distance eps(ε) and minPts Calculation

for DBSCAN

The DBSCAN clustering algorithm groups the whole software based on the distance mea-

surement. To make the algorithm workable, a density reachability distance, known as eps

and the minimum object number in a cluster, known as minPts are needed to be measured.

The eps value for DBSCAN, is calculated using the intercept point generated from the pre-

diction model. The minPts is calculated from the total number of independent variables

because to make the SDP model workable, the total number of observation must be greater

than or equal to total number of selected independent variables.

The eps value calculation for DBSCAN is most critical and important because the suc-

cess of the clustering algorithm depends on it. The eps value is calculated by summing all

intercept values from the prediction model, described in equation 4.5, considering only one

independent variable at a time.

66

Y = bx+ c (4.5)

Since, it uses 8 code metrics, described in 2.3.1, the eps value is calculated by sum-

ming the eight intercept values considering one independent variable at a time. The whole

procedure of calculating the eps value for DBSCAN is given in Algorithm 6.

eps = ∑bi (4.6)

Algorithm 6 Density Reachability Distance (ε) calculation for DBSCAN

Require: Dataset D, Coefficient Value, b, intercept Point c, eps ε, Independent variable,
X

Ensure: ε=0
1: for each X in D do
2: Run Y = bx+ c in D
3: Calculate c = Y −bx
4: ε← ε+ c
5: end for
6: return ε

In the very beginning of this Algorithm 6, the Equaltion 4.5 is applied to the software

Dataset to compute the intercept point c, by using Lines 1-3. This equation is iterated for

each of dependent variable assuming the impact of others 0. Then the intercept point for

each independent variable is summed to one variable ε by using Line 4.

4.4 Experimental Setup and Result Analysis

In this section, the focus will be kept on how the proposed dimension reduction technique

named as SARCM is performed in comparison with the PCA for software defect predic-

tion. This section presents the implementation details of the proposed SARCM along with

Selected Prediction Model, Prediction Validation Process, Dataset Collection, Simulation

67

Environment setup and Implementation Description of the Used Techniques. The proposed

SARCM is performed on 6 open source software Datasets available in Promise Reposi-

tory [12]. Finally, the performance of the SDP model using SARCM is evaluated on the

basis of prediction accuracy.

4.4.1 Software Defect Prediction Model and Its Validation

Software defect prediction model predicts the defects of a class by analyzing the relation-

ships between software code metrics and software defects. There exists defect prediction

models using various prediction techniques. In this thesis, the linear regression model is

selected as the prediction model to predict the defects of a particular class because of the

linear the relationship among the code metrics’ attributes [7, 49]. The detail description of

linear regression model is already described in Chapter 2, Section 2.2.1 and this model has

already been used in Chapter 3 for predicting software defects. For more clarification, the

prediction model and its validation process is also described here.

The linear regression model uses a set of dependent variables which are WMC, CBO,

DIT, LCOM, LOC, NPM, RFC, NOC (see section 2.3.1 for detail description) to predict

the dependent variable which is defect. The linear equation used by the linear regression

model is given in Equation 4.7 [7].

Y = b1x1 +b2x2 +b3x3 +b4x4 +b5x5 +b6x6 +b7x7 +b8x8 + c (4.7)

where,

• Y is the number of defects in an OO class

• x1...x8 are the independent variables which are CBO, LCOM, DIT, RFC, WMC,

LOC, NPM and NOC

68

• b1...b8 are the coefficient values of those independent variables respectively

• c is the value of Y when all independent variables are 0.

As the success of the linear regression model depends on the training Dataset, after

reducing the dimension of the Dataset, the total Dataset is divided into two sets such as

trainset and testset. In this thesis, similar as Juban et al. [50], 80% data is used to train the

prediction model and the remaining data is used to assess the performance and accuracy of

the model.

To evaluate the quality of the defect prediction model achieved by the linear regression

analysis, the Mean (M), Median (Md) and Standard Deviation (StD) of Absolute Residuals

(AR) are computed. The AR value, widely used in the performance measure of the linear

regression model [3, 51], is the difference between predicted defects and actual defects of

a particular OO class. The smaller value of AR shows the better accuracy of the prediction

model [3].

To compare the proposed dimension reduction approach SARCM with PCA in terms of

defect prediction accuracy, the error is computed by using the Equation 4.8 [3]. The error

value shows whether the proposed dimension reduction technique is better or worse in the

context of software defect prediction [3].

error =
MAR(SARCM)−MAR(PCA)

StDAR(PCA)
(4.8)

where,

• MAR(SARCM) is the mean value of the AR using SARCM

• MAR(PCA) is the mean value of the AR using PCA

• StDAR(PCA) is the standard deviation of AR using PCA

69

The error value, in between -1 and +1, is the ratio of mean difference of two techniques

and the standard deviation of the technique to which another technique is compared. For

a software release, negative values of error indicate the proposed approach SARCM out-

performs PCA technique, while a positive value indicates the dimension reduced by PCA

outperforms the SARCM.

4.4.2 Tools and Technologies

In this thesis, the SDP model, the proposed technique SARCM, clustering techniques and

PCA have been implemented by using the R programming language [53]. To run R script,

the open source software RStudio has been used to perform the experiment [54]. The short

description of R and RStudio are given below as described in Chapter 3, Section 3.5.4.

R: It is a programming language for statistical computing and graphics [53]. It is widely

used among statisticians and data miners for data analysis. In this thesis, R has been se-

lected to implement the selected linear regression model, SARCM and PCA because it is

open source and easy to implement.

RStudio: To run R script, the open source software RStudio has been used [54]. It

is a free and open source integrated development environment for R, written by C++ [54].

RStudio is available in two editions: RStudio Desktop, where the program is run locally.and

RStudio Server, which allows accessing RStudio using a web browser while it is running

on a remote Linux server. In this experiment, RStudio Desktop version has been used.

4.4.3 Dataset Collection

The proposed dimension reduction technique for software defect prediction has been ex-

perimented on 6 open source software developed using Java. All of these defect Dataset

70

have been downloaded from the Promise Reposity [12]. These Datasets contain the cor-

responding software code metrics and defect information which are usually used by the

prediction model to predict the defect for future releases. The short description of these

Dataset’s software are given below.

Ant: It is a library and command line tool for automating software build processes. In

this experiment, the Ant releases 1.3 to 1.7 have been selected because its Dataset is widely

available and it is built using Java [12].

jEdit: It is a text editor for programmers, built using Java. It supports more than 200

file types. The available jEdit version 4.2 and 4.3 have been considered here [12].

Xalan: It is an XSLT processor for transforming XML documents to HTML, text or

other XML document types. The available releases from Xalan 2.4 to 2.7 have been con-

sidered here [12].

Camel: It is a rule-based routing and mediation engine, built using Java, which provides

enterprise integration patterns using an API to configure routing and mediation rules. The

version 1.0 to 1.7 have been considered in this course [12].

Synapse: It is an enterprise service software that provides support for XML and SOAP.

In this thesis, the only available Synapse 1.2 Dataset has been considered [12].

Tomcat: It is an open-source web server and servlet container developed by the Apache

Software Foundation. In this thesis, the available tomcat Dataset has been downloaded from

Promise Repository [12].

4.4.4 Implemented Clustering Approaches

The SARCM technique reduces the dimensions to two latent variables which are PosIm-

pactValue and NegImpactValue based on the positive and negative significance of indepen-

dent variables to the dependent variable respectively. Now the dimension reduced Dataset is

71

plotted into two dimensional plane considering PosImpactValue as x-axis and NegImpact-

Value as y-axis which makes closer the similar objects. Then the two clustering approaches

which are DBSCAN and WHERE clustering approaches can be used to find the most simi-

lar objects. The detail description of DBSCAN is given in Section 4.3.2 and the description

of WHERE clustering approach is given below.

WHERE clustering: It finds the software artifacts with similar properties by using

FASTMAP heuristic [5,6]. Given n objects plotted in the two dimensional plane, the great-

est variability of two furthest objects are found as follows.

1. Pick any object Z at random;

2. Find the object X that is furthest away from Z;

3. Find the object Y that is furthest away from X.

If each object now has a distance a, to the origin (0,0) and distance b, to the most

remote object. From the Pythagoras and cosine rule, each object is at the point (x,y) can

be measured by using Equation 4.9 and Equation 4.10 respectively.

x =
(a2 + c2−b2)

2c
(4.9)

y =
√

a2− x2 (4.10)

Now it calculates the median values of each dimension (x̂, ŷ) and divides the whole

plane into: NorthWest, NorthEast, SouthWest, SouthEast regions considering the (x̂, ŷ) as

the center point.

4.4.5 Implementation Description of the Used Techniques

To perform clustering algorithms on the Dataset, a tool based on the aforementioned di-

mension reduction technique named as SARCM was implemented to make Dataset two-

72

dimensional. The proposed dimension reduction technique based on the impact of inde-

pendent variable to dependent variable was implemented using R script [53].

After reducing the dimensions of the above Dataset by SARCM, the prominent cluster-

ing algorithms such as DBSCAN [62, 73] and WHERE clustering [5, 6] approaches were

applied on the dimension reduced Dataset. The DBSCAN clustering [62] which finds clus-

ters from a Dataset based on the reachability among multiple objects, was implemented

using R language [53]. The detail description of DBSCAN is given in Section 4.3.2.

The WHERE clustering algorithm which finds the software artifacts with similar prop-

erties by using FASTMAP heuristic, was implemented using R [5,6]. This clustering tech-

nique uses Pythagorus and cosine rule to select a point to divide the all objects, plotted in

two dimensional plane, into NorthWest, NorthEast, SouthWest, SouthEast regions.

The SDP model using linear regression analysis to predict defects of an OO class using

the relationship between code metrics and software defects, was implemented using the R

script [53]. Then, this prediction model was applied to clusters of the Dataset found by the

above clustering techniques to predict defects for an unknown OO class.

4.4.6 Result Analysis

This section presents the implementation schemes of the proposed dimension reduction

technique SARCM along with its impact on software defect prediction. The proposed

SARCM was implemented on 6 open source software, available in Promise Repository

[12]. The performance of SARCM is compared with PCA to evaluate which technique

works well in the context of software defect prediction. Finally, the performance of SARCM

is evaluated on the basis of prediction accuracy using absolute residual values.

The result of the selected SDP model using different clustering approaches are com-

pared by using the MAR, MdAR and StDAR of the Absolute Residuals (AR). To evaluate

73

the performance of SARCM compared to PCA, two clustering techniques which are DB-

SCAN and WHERE are applied separately to the dimension reduced Dataset. For the

Dataset, dimension reduced by SARCM, both DBSCAN and WHERE techniques divide

the whole Dataset into multiple clusters based on the similarity of the OO classes, because

the SARCM technique reduces the dimension in a way where the similar objects get closer

values. For the Dataset, dimension reduced by PCA, the above mentioned clustering meth-

ods also divide the Dataset into multiple clusters based on the variances among elements,

because PCA reduces the dimensions in such a way that the selected principal component

can describe all variances. Then the SDP model uses those clusters of Dataset for training

purpose to predict software defects. Finally the performance of the SDP model is measured

by taking the residual value of predicted and actual defects.

The analysis is divided into two phases. In phase I, the comparison of AR Values are

analyzed by computing the MAR, MdAR and StDAR values. In phase II, the error values

are calculated to determine which technique performs well in software defect prediction.

Phase I: The Comparison of Absolute Residual Values

The Absolute Residual is the difference between actual and predicted defects. The low

value of AR shows the high performance and accuracy of a SDP model, and in contrary, the

high value determines the low performance and accuracy of a SDP model [3]. In this thesis,

the descriptive statistics of the ARs are summarized in Table 4.1 to compare the impact of

the proposed SARCM technique on the SDP model. This table illustrates the comparison

of MAR, MdAR, StDAR values of DBSCAN and WHERE clustering techniques using

the dimension reduced Dataset by SARCM and the PCA respectively. The descriptions

of DBSCAN using SARCM vs. DBSCAN using PCA and WHERE using SARCM vs.

WHERE using PCA are given below.

74

Ta
bl

e
4.

1:
T

he
m

ea
n,

m
ed

ia
n

an
d

st
an

da
rd

de
vi

at
io

n
va

lu
e

of
A

R

D
at

as
et

D
B

SC
A

N
us

in
g

SA
R

C
M

D
B

SC
A

N
us

in
g

PC
A

W
H

E
R

E
us

in
g

SA
R

C
M

W
H

E
R

E
us

in
g

PC
A

M
A

R
M

dA
R

St
D

ev
M

A
R

M
dA

R
St

D
ev

M
A

R
M

dA
R

St
D

ev
M

A
R

M
dA

R
St

D
ev

A
nt

-1
.7

0.
46

0.
24

0.
54

0.
37

0.
18

0.
54

0.
65

0.
48

0.
60

0.
71

0.
30

1.
07

A
nt

-1
.6

0.
48

0.
29

0.
59

0.
76

0.
27

1.
48

0.
99

1.
02

0.
70

0.
99

0.
63

0.
98

A
nt

-1
.5

0.
13

0.
10

0.
12

0.
13

0.
08

0.
14

0.
30

0.
05

0.
67

0.
40

0.
14

0.
47

A
nt

-1
.4

0.
27

0.
19

0.
22

0.
32

0.
29

0.
18

2.
85

0.
17

7.
68

0.
64

0.
45

0.
57

A
nt

-1
.3

0.
25

0.
15

0.
31

0.
31

0.
08

0.
49

0.
39

0.
17

0.
50

1.
06

0.
26

2.
82

X
al

an
-2

.7
0.

66
4

0.
57

0.
40

1.
11

0.
37

3.
60

0.
38

0.
26

0.
37

0.
62

0.
62

0.
45

X
al

an
-2

.6
0.

72
0.

57
0.

54
0.

87
0.

62
0.

88
1.

14
0.

94
0.

93
1.

52
0.

89
1.

85
X

al
an

-2
.5

0.
62

0.
53

0.
51

0.
78

0.
61

0.
87

0.
83

0.
56

0.
88

0.
80

0.
51

0.
81

X
al

an
-2

.4
0.

28
0.

12
0.

45
0.

25
0.

13
0.

33
0.

30
0.

16
0.

44
0.

33
0.

15
0.

47
Sy

na
ps

e-
1.

2
0.

67
0.

37
0.

69
0.

55
0.

46
0.

45
0.

61
0.

38
0.

62
1.

0
0.

86
0.

86
jE

di
t-

4.
3

0.
02

0.
02

0.
02

0.
04

0.
01

0.
12

0.
10

0.
04

0.
15

0.
16

0.
08

0.
19

jE
di

t-
4.

2
0.

21
0.

15
8

0.
20

2
0.

34
9

0.
31

3
0.

41
5

0.
39

7
0.

28
8

0.
35

0
0.

28
0.

13
0.

41
jE

di
t-

3.
2

3.
01

1.
97

4.
34

0
6.

53
2.

23
10

.0
2

2.
15

1.
34

3.
23

1.
94

1.
33

2.
04

C
am

el
-1

.6
0.

74
8

0.
32

2
1.

03
5

1.
54

9
0.

49
0

7.
06

4
1.

06
5

0.
40

3
1.

34
0

1.
23

0.
64

1.
50

C
am

el
-1

.4
0.

69
0.

27
1.

34
0.

86
0.

51
0.

90
0.

71
0.

23
1.

33
1.

45
0.

42
2.

58
C

am
el

-1
.2

1.
11

0.
53

1.
27

1.
20

0.
62

2.
21

1.
34

0.
70

1.
41

1.
50

1.
00

1.
73

To
m

ca
t

0.
14

9
0.

04
6

0.
24

1
0.

29
0

0.
09

3
0.

40
6

0.
18

9
0.

03
3

0.
30

3
0.

18
9

0.
12

6
0.

27
4

75

DBSCAN using SARCM vs. DBSCAN using PCA

In Table 4.1, the column named DBSCAN using SARCM and DBSCAN using PCA

show that MAR values are minimum for DBSCAN using SARCM. It means that the pre-

diction model considering DBSCAN using SARCM produces smaller AR values compared

to DBSCAN using PCA. Which indicate that the SDP model considering DBSCAN using

SARCM can accurately predict defects for the OO classes. In this table, MAR values are

high for Xalan-2.7 and Camel-1.6. For the Dataset, Xalan-2.7, the MAR values of DB-

SCAN using SARCM and DBSCAN using PCA are 0.664 and 1.11 respectively and for

Dataset, Camel-1.6, the values are 0.748 and 1.549 respectively. So, the accuracy of the

prediction model is low for those Dataset and the MAR value is minimum for DBSCAN

using SARCM which indicates that DBSCAN using SARCM performs better than DB-

SCAN using PCA. For the Dataset, jEdit-4.3, the MAR values of DBSCAN using SARCM

and DBSCAN using PCA are low and these are 0.02 and 0.04 respectively. Here, the MAR

value of DBSCAN using SARCM is also smaller than DBSCAN using PCA which means

that the accuracy of the prediction model considering DBSCAN using SARCM is higher

than using PCA. For the Dataset Ant-1.5, both techniques produce equal MAR value of

0.13, which indicates that the accuracy of the prediction model is equal in both cases.

This technique fails in only 3 Datasets which are Ant-1.7, Synapse-1.2 and Xalan-

2.4, because for those Datasets, DBSCAN cannot divide those Datasets properly. The

detail inspection in those Dataset give that those contain low number of objects, so the

clustering process produces clusters with small number of objects. As a result, SARCM

cannot perform well in those Datasets that result low prediction accuracy in SDP model.

In a nutshell, the SDP model considering SARCM based DBSCAN outperforms in 14

Datasets out of 17, listed in Table 4.1, which indicates that SARCM based DBSCAN is

better than PCA based DBSCAN in the context of software defect prediction.

76

WHERE using SARCM vs. WHERE using PCA

For WHERE clustering method, illustrated in column named WHERE using SARCM

and WHEHE using PCA (Table 4.1), the mean value of AR is also minimum in WHERE

using SARCM compared to DBSCAN using PCA in 14 Datasets out of 17 which is an

indication of better prediction accuracy of SDP model considering WHERE using SARCM.

For Ant-1.3, the MAR values of WHERE using SARCM and WHEHE using PCA are 0.39

and 1.06 respectively. For Camel-1.4, the MAR values of SARCM based WHERE and

PCA based WHEHE are 0.71 and 1.45 respectively. Since, the AR value is high in Ant-1.3

and Camel-1.4, the accuracy of the prediction model using SARCM is low in those two

Datasets. For Dataset Ant-1.6, both techniques produces equal MAR value of 0.99, which

indicates that both DBSCAN using SARCM and DBSCAN using PCA work well in this

Dataset. The minimum values 0.10 and 0.16, are produced in SARCM based WHERE

and PCA based WHERE respectively for jEdit-4.3. Here, the MAR value of SARCM

based WHERE is less than PCA based WHERE, which indicates that the prediction model

considering SARCM based WHERE performs better than PCA based WHERE.

In a nutshell, the SDP model considering WHERE using SARCM outperforms in 14

Datasets out of 17 software Dataset, listed in Table 4.1. This technique fails in 3 Datasets,

which are Ant-1.4, jEdit-4.2 and Xalan-2.4, among these, the MAR value is high for Ant-

1.4 which means that it largely fails in this Dataset. The detail inspection in those Dataset

gives that those contain low number of objects, so the clustering algorithms produce clus-

ters with small number of objects. As a result, SARCM cannot perform well in those

Datasets that result low prediction accuracy of the SDP model.

Phase 2: The Comparison of Error Values

The error value shows how much better or worse the SDP model is compared to other.

The error values are calculated from MAR and StDAR vales using Equation 4.8 (see Sec-

tion 4.4.1 for detail description). Usually, the negative error value shows high accuracy and

77

positive value shows low accuracy of the SDP model [3]. The error values of DBSCAN

are calculated considering DBSCAN using SARCM and DBSCAN using PCA by apply-

ing the Equation 4.8. In the same way and using the same equation, the error values for

WHERE clustering are also calculated considering WHERE using SARCM and WHERE

using PCA. Table 4.2 summarizes all error values computed by using Equation 4.8 for the

DBSCAN and WHERE clustering techniques.

Table 4.2: The error values of all Datasets for DBSCAN and WHERE

Dataset
ERROR

DBSCAN WHERE
Ant-1.7 16% -6%
Ant-1.6 -18.87% .135%
Ant-1.5 -.576% -20.58%
Ant-1.4 -31.31% 383%
Ant-1.3 -12.38% -23.4%

Xalan-2.7 -12.52% -52.23%
Xalan-2.6 -17.40% -20.29%
Xalan-2.5 -0.18.65% 4.7%
Xalan-2.4 8.6% -6.7%

Synapse-2.2 26.5% -44.63%
jEdit-4.3 -13.23% -29.27%
jEdit-4.2 -32.85% 26.82%

Camel-1.6 -11.3% -11.55%
Camel-1.4 -18.72% -28.546%
Camel-1.2 -4.42% -8.82%
Camel-1.0 -17.76% -14.8%

Tomcat -.34.7% -0.25%

The error values considering the clustering technique DBSCAN are summarized in Fig-

ure 4.3. In this figure, all points under the horizontal line represent the software releases, for

those the SDP model has better prediction accuracy. Since, the negative value means that

the clustering methods using SARCM outperform the clustering methods using PCA, the

clustering method DBSCAN using SARCM outperforms the clustering method DBSCAN

using PCA in 14 Datasets. In this figure, only 3 Datasets which are Ant-1.7, Xalan-2.4

78

Figure 4.3: The distribution of error values for DBSCAN

and Synapse-1.2 have positive error values, so the clustering algorithm DBSCAN using

SARCM fails in those Datasets because of the inappropriate reachablity distance measure

for DBSCAN. As a result, the DBSCAN cannot properly group the software Dataset which

actually results low prediction accuracy of the SDP model.

In the same way, the error values considering the WHERE clustering technique are

summarized in Figure 4.4. In this figure, all points under the horizontal line represent the

software releases for those the SARCM based WHERE clustering method outperforms the

PCA based WHERE clustering method. The points above the horizontal line represent the

software releases for those PCA based WHERE clustering methods outperforms SARCM

based WHERE. Here only 3 Datasets reside above the horizontal line and the remaining 14

Datasets reside under the line. So, the WHERE clustering algorithm considering SARCM

outperforms PCA in 14 Datasets. It largely fails in Ant-1.4, because it contains lower num-

79

Figure 4.4: The distribution of error values for WHERE

ber of objects and after applying clustering technique, it produces multiple clusters with

small amount of objects which actually results low prediction accuracy of the SDP model.

For Xalan-2.5 and jEdit-4.2, the error values are close to zero, so it can be negligible.

The SDP model has better prediction accuracy when the clustering algorithms use the

dimension reduced Dataset by SARCM, because SARCM reduces the dimension based on

the significance of CBO, RFC, LCOM, WMC, DIT, NPM, LOC and NOC to the software

defects. As a result, the dimension reduced Dataset gets closer value for similar objects

and SDP model gets similar Dataset for learning procedure. In principle, it can be said that

the proposed SARCM can significantly improve the accuracy of SDP model which results

lower AR values compared to PCA.

80

4.5 Conclusion

In this chapter, a new approach named as SARCM, to reduce the dimensions for the soft-

ware engineering Dataset has been proposed. SARCM reduces the dimensions of Dataset

using the significance of the independent variables which are CBO, RFC, LCOM, WMC,

DIT, NPM, LOC and NOC to the dependent variable which is the number of software de-

fects. The dimension reduced Dataset by SARCM usually gets closer two dimensional

values for similar objects. If the dimension reduced Dataset is plotted in the two dimen-

sional plane, the similar objects situate closer to each other and the dissimilar objects are far

from each others. As a result, multiple distance based clustering techniques can accurately

group the software into multiple clusters based on their similarities. The success of group-

ing software into multiple clusters depends on clustering techniques, SARCM provides the

platform where multiple clustering algorithms can work.

In this thesis, to evaluate SARCM in the software defect prediciton, two clustering

algorithms which are DBSCAN and WHERE have been used. These two methods divide

the whole Dataset into multiple clusters so that the SDP models get similar Dataset for

learning purpose. Results show that the SDP model performs well in the 14 Datasets out of

17, considering SARCM based clustering compared to PCA based clustering .

The next chapter discusses about the overall summary of the proposed PBC and SARCM

along with the further scope for improvements of proposed solutions.

81

Chapter 5

Discussion and Conclusion

In this chapter, discussion regarding the proposed PBC and SARCM will be presented

followed by the future direction and scope for improvements of the proposed solutions.

5.1 Introduction

The success of software defect prediction model largely depends on how better the model

learned from the software Dataset such as code metrics and past defect information. Since

the Dataset having lots of variabilities impede the accuracy and performance of the pre-

diction model, minimizing those variabilities may improve the performance. Besides this,

multidimensionalities among the Dataset thwart the clustering methods to perform prop-

erly on these Dataset. In this thesis, two different approaches for grouping the source code

based on their similarities are proposed. Firstly, Package Based Clusering (PBC) that uses

package information to find the similarity among the software. Secondly, Similarity Anal-

ysis by Reducing the Code Metrics (SARCM) that aims to reduce software engineering

Datasets so that any distance based clustering can work on these Datasets.

5.2 Package Based Clustering

Package Based Clustering (PBC) uses package information to group the source code by

Java programming convention. Here, PBC is used to combine the related objects from

the software built by Java such that the whole software is divided into multiple clusters

based on package information. As a result, the defect prediction model gets useful chunk

of Dataset for training purposes.

82

The proposed technique has been experimented on 8 releases of 2 open source software

which are Ant and Xalan [12, 57]. Besides PBC, the well known BorderFlow algorithm

was also applied to those Dataset for performance comparison. Finally, the SDP model

considering PBC, BorderFlow and the entire system were implemented and compared.

Results show that the PBC based SDP model performs better than other approaches.

5.3 Similarity Analysis by Reducing the Code Metrics’ Di-

mension

Similarity Analysis by Reducing the Code Metrics’ dimension (SARCM) is proposed for

reducing dimensions for software engineering Dataset through impact of code metrics such

as CBO, LCOM, etc. to the number of software defects in an OO class. The impacts of

CBO, RFC, LCOM, WMC, etc. to defect are measured by using regression analysis which

is a component of SARCM. The regression coefficient acts as an impact of code metrics to

the number of software defects.

Now the dimension of Dataset is reduced to two variables which are PosImpactValue

and NegImpactValue, based on the positive and negative impact of the code metrics to

the number of software defects respectively. This dimension reduced Dataset is plotted

on the two dimensional plane considering PosImpactValue as x-axis and NegImpactValue

as y-axis for the distance based clustering apporaches. In this thesis, the DBSCAN and

WHERE clustering techniques have been applied to dimension reduced Dataset to group

those into multiple clusters based on their closeness.

Finally, the SDP model has been applied to 17 releases of 6 open source software de-

veloped using Java. During the experimentation, the SDP model learned from the clusters

of the Dataset by DBSCAN and WHERE clustering techniques. To compare the results,

both clusters were also applied to the Dataset dimension reduced by PCA. Then the same

83

SDP model was inherited and implemented on Dataset dimensioned reduced by PCA using

DBSCAN and WHERE. Finally, results show that the SDP model performs well in the 14

Datasets out of total.

5.4 Future Research Directions

This research aims at improving the accuracy and performance of SDP models through im-

proving the learning procedure. The improvement is made through introducing similarity

analysis to the Dataset. However, this research can be extended to following directions.

Code Metrics Selection

There are more software code metrics in the literature to define quality of a software. In

this experiment, 8 most prominent code metrics have been used for reducing the dimensions

of the software engineering Dataset to two latent variables. Further researches can be done

to incorporate other code metrics’ impact to the dimension reduction technique.

Additional Clustering techniques

In the field of software defect prediction, the proposed PBC and well known clustering

techniques WHERE and DBSCAN are used to group the source code into multiple clusters.

PBC works at the source code level to find clusters and other two techniques work at code

metrics level, generated from source code, to group software into multiple clusters. Other

clustering techniques (for example, K-means, OPTICS, etc.) can be experimented on those

dimension reduced Dataset to address their significance on the software defect prediction.

Dataset Collection

Here, experiments were performed on the 17 releases of 6 open source software col-

lected from Promise Repository [12]. This repository contains other software Dataset and

researchers are continuously adding Dataset into it. Further experimentation can be accom-

plished on the new Dataset available in the same repository. Although this experiment has

84

been conducted on the open source software, there is also a scope to incorporate this thesis

into real life software projects by working collaboratively with software companies.

5.5 Final Remarks

This thesis has demonstrated that training the SDP model by using similar Dataset can im-

prove the performance and accuracy. The similarity among objects can be analyzed based

on their variablities using clustering techniques. It has found that reducing multidimention-

alities among the Datasets helps the clustering algorithms to perform more accurately.

85

Bibliography

[1] G. Tassey. The economic impacts of inadequate infrastructure for software testing,
2002.

[2] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition, 2001.

[3] Giuseppe Scanniello, Carmine Gravino, Andrian Marcus, and Tim Menzies. Class
level fault prediction using software clustering. In IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE),2013, pages 640–645. IEEE,
2013.

[4] Ramandeep S Sidhu, Sunil Khullar, Parvinder S Sandhu, RPS Bedi, and Kiranbir
Kaur. A subtractive clustering based approach for early prediction of fault proneness
in software modules. World Academy of Science, Engineering and Technology, 67,
2010.

[5] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, Forrest
Shull, Burak Turhan, and Thomas Zimmermann. Local versus global lessons for
defect prediction and effort estimation. IEEE Transactions on Software Engineering,
39(6):822–834, 2013.

[6] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas Zimmermann, and David
Cok. Local vs. global models for effort estimation and defect prediction. In 26th
IEEE/ACM International Conference on Automated Software Engineering Proceed-
ings of the 2011, pages 343–351. IEEE Computer Society, 2011.

[7] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge, 2013.

[8] Freda Kemp. Applied multiple regression/correlation analysis for the behavioral sci-
ences. Journal of the Royal Statistical Society: Series D (The Statistician), 52(4):691–
691, 2003.

[9] David A Freedman. Statistical models: theory and practice. Cambridge University
Press, 2009.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning,
pages 273–297, 1995.

[11] Finn V. Jensen. Introduction to Bayesian Networks. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1996.

[12] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fayola Pe-
ters, and Burak Turhan. The promise repository of empirical software engineering
data, June 2012.

86

[13] Cagatay Catal and Banu Diri. A systematic review of software fault prediction studies.
Expert systems with applications, 36(4):7346–7354, 2009.

[14] K Soundarraj and T Parthasarathi. Major reasons for bugs in software applications.

[15] James S. Huggins. First computer bug. http://www.jamesshuggins.com/h/tek1/
first_computer_bug.htm , 2015, (accessed on April 29, 2015).

[16] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2/E. Pearson Education India, 1995.

[17] Mary Jean Harrold. Testing: a roadmap. In Proceedings of the Conference on the
Future of Software Engineering, pages 61–72. ACM, 2000.

[18] Luay Ho Tahat, Boris Vaysburg, Bogdan Korel, and Atef J Bader. Requirement-based
automated black-box test generation. In Computer Software and Applications Con-
ference, 2001. COMPSAC 2001. 25th Annual International, pages 489–495. IEEE,
2001.

[19] David R Cox. The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), pages 215–242, 1958.

[20] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pear-
son Education, 2 edition, 2003.

[21] John C. Platt. Advances in kernel methods. chapter Fast Training of Support Vec-
tor Machines Using Sequential Minimal Optimization, pages 185–208. MIT Press,
Cambridge, MA, USA, 1999.

[22] Terrence S Furey, Nello Cristianini, Nigel Duffy, David W Bednarski, Michel Schum-
mer, and David Haussler. Support vector machine classification and validation of can-
cer tissue samples using microarray expression data. Bioinformatics, 16(10):906–914,
2000.

[23] James M Keller, Michael R Gray, and James A Givens. A fuzzy k-nearest neighbor
algorithm. IEEE Transactions on Systems, Man and Cybernetics, (4):580–585, 1985.

[24] Thierry Denoeux. A k-nearest neighbor classification rule based on dempster-shafer
theory. IEEE Transactions on Systems, Man and Cybernetics, 25(5):804–813, 1995.

[25] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is
nearest neighbor meaningful? In Database TheoryICDT99, pages 217–235. Springer,
1999.

[26] Ronald R Hocking. A biometrics invited paper. the analysis and selection of variables
in linear regression. Biometrics, pages 1–49, 1976.

87

[27] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of
finite state markov chains. The annals of mathematical statistics, pages 1554–1563,
1966.

[28] Iker Gondra. Applying machine learning to software fault-proneness prediction. J.
Syst. Softw., 81(2):186–195, February 2008.

[29] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. Nasa metric data program,
June 2007.

[30] Nicolas Bettenburg, Meiyappan Nagappan, and Ahmed E Hassan. Think locally,
act globally: Improving defect and effort prediction models. In 9th IEEE Working
Conference on Mining Software Repositories (MSR), 2012, pages 60–69. IEEE, 2012.

[31] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[32] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering, 28(1):4–17, 2002.

[33] Hector M Olague, Letha H Etzkorn, Sampson Gholston, and Stephen Quattlebaum.
Empirical validation of three software metrics suites to predict fault-proneness of
object-oriented classes developed using highly iterative or agile software develop-
ment processes. IEEE Transactions on Software Engineering, 33(6):402–419, 2007.

[34] Fernando Brito Abreu and Rogério Carapuça. Object-oriented software engineering:
Measuring and controlling the development process. In Proceedings of the 4th inter-
national conference on software quality, volume 186, 1994.

[35] Peng He, Bing Li, Xiao Liu, Jun Chen, and Yutao Ma. An empirical study on software
defect prediction with a simplified metric set. Information and Software Technology,
59:170–190, 2015.

[36] Ahmet Okutan and Olcay Taner Yıldız. Software defect prediction using bayesian
networks. Empirical Software Engineering, 19(1):154–181, 2014.

[37] Maurice H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., New York, NY, USA, 1977.

[38] Thomas J. McCabe. A complexity measure. In Proceedings of the 2Nd Interna-
tional Conference on Software Engineering, ICSE ’76, pages 407–, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press.

[39] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
eclipse. In International Workshop on Predictor Models in Software Engineering,
2007. PROMISE’07: ICSE Workshops 2007., pages 9–9. IEEE, 2007.

88

[40] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting component
failures at design time. In ACM/IEEE international symposium on Empirical software
engineering Proceedings of the 2006, pages 18–27. ACM, 2006.

[41] Xi Tan, Xin Peng, Sen Pan, and Wenyun Zhao. Assessing software quality by program
clustering and defect prediction. In 18th Working Conference on Reverse Engineering
(WCRE), 2011, pages 244–248. IEEE, 2011.

[42] Axel-Cyrille Ngonga Ngomo. Low-bias extraction of domain-specific concepts. In-
formatica: An International Journal of Computing and Informatics, 34(1):37–43,
2010.

[43] Ganesh J Pai and Joanne Bechta Dugan. Empirical analysis of software fault con-
tent and fault proneness using bayesian methods. IEEE Transactions on Software
Engineering, 33(10):675–686, 2007.

[44] Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design met-
rics for predicting high and low severity faults. IEEE Transactions on Software Engi-
neering, 32(10):771–789, 2006.

[45] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on Software Engi-
neering, 22(10):751–761, 1996.

[46] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Transactions on
Software Engineering, 31(10):897–910, 2005.

[47] Bugzilla for mozilla. https://bugzilla.mozilla.org/ , 2005, (accessed on April
29, 2015).

[48] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software
fault prediction metrics: A systematic literature review. Information and Software
Technology, 55(8):1397–1418, 2013.

[49] Richard Arnold Johnson, Dean W Wichern, et al. Applied multivariate statistical
analysis, volume 4. Prentice hall Englewood Cliffs, NJ, 1992.

[50] Jeremie Juban, Nils Siebert, and George N Kariniotakis. Probabilistic short-term wind
power forecasting for the optimal management of wind generation. In Power Tech,
2007 IEEE Lausanne, pages 683–688. IEEE, 2007.

[51] Ekrem Kocaguneli, Tim Menzies, and Jacky W Keung. Kernel methods for software
effort estimation. Empirical Software Engineering, 18(1):1–24, 2013.

[52] Giuseppe Scanniello and Andrian Marcus. Clustering support for static concept loca-
tion in source code. In IEEE 19th International Conference on Program Comprehen-
sion (ICPC), 2011, pages 1–10. IEEE, 2011.

89

[53] Terry M Therneau. A Package for Survival Analysis in S, 2015. version 2.38.

[54] John Verzani. Getting started with RStudio. ” O’Reilly Media, Inc.”, 2011.

[55] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[56] Anders Hejlsberg and Mads Torgersen. Hejlsberg, anders and torgersen, mads.
Onlineathttp://msdn.microsoft.com/en-us/library/bb308966.aspx .

[57] Apache Team. Apache repository. http://apache.org/ , 2015, (accessed on March
29, 2015).

[58] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of 27th International Conference on
Software Engineering, 2005. ICSE 2005., pages 284–292. IEEE, 2005.

[59] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461. ACM, 2006.

[60] Nachiappan Nagappan and Thomas Ball. Using software dependencies and churn
metrics to predict field failures: An empirical case study. In First International Sym-
posium on Empirical Software Engineering and Measurement, 2007. ESEM 2007.,
pages 364–373. IEEE, 2007.

[61] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international conference
on Software engineering, pages 531–540. ACM, 2008.

[62] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol-
ume 96, pages 226–231, 1996.

[63] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley Interdisci-
plinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[64] Edmund R Malinowski. Factor analysis in chemistry. 2002.

[65] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1):37–52, 1987.

[66] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[67] Jae-On Kim and Charles W Mueller. Introduction to factor analysis: What it is and
how to do it, volume 13. Sage Beverly Hills, CA, 1978.

90

[68] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[69] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009.

[70] Evren Ceylan, F Onur Kutlubay, and Ayse Basar Bener. Software defect identifi-
cation using machine learning techniques. In 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications, 2006. SEAA’06., pages 240–247.
IEEE, 2006.

[71] Burak Turhan and Ayse Bener. A multivariate analysis of static code attributes for
defect prediction. In Seventh International Conference on Quality Software, 2007.
QSIC’07., pages 231–237. IEEE, 2007.

[72] Norman Richard Draper and Harry Smith. Applied regression analysis 2nd Ed. New
York New York John Wiley and Sons 1981., 1981.

[73] Ricardo JGB Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering
based on hierarchical density estimates. In Advances in Knowledge Discovery and
Data Mining, pages 160–172. Springer, 2013.

[74] Fred R Shapiro and Michelle Pearse. Most-cited law review articles of all time, the.
Mich. L. Rev., 110:1483, 2011.

91

