JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

MapBeing: An Efficient Vector Data Manipulation
Framework for WebGIS

Moshiur Rahman*, Shafiuzzaman Hira, Rayhanur Rahman? and Kazi Sakib®
Institute of Information Technology, University of Dhaka, Bangladesh
*moshi.iit@gmail.com Thira0322@yahoo.com *rayhan@du.ac.bd $sakib@iit.du.ac.bd

Abstract—Web Geographic Information Systems (WebGIS)
have been introduced for fulfilling the growing need of Geo-
graphic Information Systems (GIS) in real world technologies
evolving around the Internet. WebGIS can also be used to
manipulate the published vector data according to the user
need. However, challenges arise in case of ensuring seamless
sharing, integration and interoperability of large volumes of
geospatial data in such a complex web-based system. Especially,
publishing of large volume interactive vector data might degrade
the performance of WebGIS, due to extensive data transmission
and rendering time. In this research, a WebGIS architecture
named MapBeing is proposed which facilitates manipulating and
publishing huge volumes of vector data on maps without degrad-
ing the data transmission performance. The proposed architecture
consists of four core layers named User End, Request Handler,
Service and Data Provider. The User End layer is constructed
using an open source JavaScript library called OpenLayers which
shows vector data on the interactive map presented on the web.
The Request Handler layer processes data provisioning based
on user interaction. GeoServer is used in the Service layer for
map creation and modification and PostGIS, a database for
storing spatial data, is used as the Data Provider layer. An open
source vector data manipulation and visualization project is also
introduced on top of these aforementioned frameworks as well.
The experiment shows that along with the ability to manipulate
and publish vector data, the architecture also achieves 23% lower
usage in user bandwidth between server and client side.

Keywords—Geographic Information System

I. INTRODUCTION

Geographic Information System (GIS) is a collection of
computer hardware, software and data for managing, analyzing
and displaying all forms of geographic information. The vector
data format is one of the spatial data types to store geographic
data such as points, lines, polylines and polygons. For the
proper usage of this data, a ubiquitous technology is needed
for accessing these data from anytime and anywhere such as
smartphones or desktops. In order to address those issues,
WebGIS has been introduced for publishing and interacting
vector data using web technologies. However, publishing of
large volume geographic data on the map is really challenging
in the web platform as excessive data transfer will be required
which will increase data rendering time on the client side.
WebGIS also provides several value added services to its users
such as modifying and sharing of vector data [18], [13]. It
has been widely recognized that future developments in GIS
should be based on WebGIS to facilitate access and analysis
of geospatial data on the web. Hence, the core manipulation of

spatial data such as create, edit and delete should be considered
with utmost attention.

For a highly interactive WebGIS based map, users often
need to modify vector data to create and update geographical
models such as rivers, cities, roads, terrains, hotels, hospital,
banks, stations and other infrastructures. For this purpose,
the server sends whole vector data to client sides such as
desktop, smartphones or smartwears. Those client sides are
then responsible for the rendering and modifying of vector data
obtained from server side data providers. The main problem in
such mechanism is the limited processing power and storage of
aforementioned client devices. There is a network bandwidth
cost as well for downloading the whole vector data each
ocassion which is often infeasible and costly in real life
scenario.

Recently researchers have gathered momentum in GIS do-
main regarding this context. TerraFly [15] and GeoHosting
[4] are instances of those which focused on publishing and
analyzing of vector data. S. Puri et. al. proposed a distributed
algorithm for large scale vector data overlay processing [14].
A WebGIS framework for Vector Data sharing has also
been proposed by F. Yin et. al. [18]. However, none of
those contributions considered manipulation of vector data.
Moreover, existing technologies for communication between
server and client side involves only tile images which are
the representation of those huge vector data residing on the
server side. Those data are rendered here on the fly as per
the requests from clients with required parameters. Hence, it
is really challenging for the users to edit or delete geospatial
shapes on the client devices efficiently since they are provided
only partial images of the total vector data.

On top of these challenges, this research thrives to provide
a WebGIS architecture named MapBeing for performing ma-
nipulation of vector data on the web without transmitting a
large volume of data between server and client side. It helps
users modify vector data on the map as well as publish with
open source server side named GeoServer, client side named
OpenLayers and data storage named PostGIS [11]. MapBeing
is also fully capable of publishing and handling interactivity of
shape files [9] provided by Environmental Systems Research
Institute (ESRI) on the map without considering the data
volume. Spatial data services are developed to control the
interactions between the browser and the spatial data. Finally,
based on the proposed architecture, a spatial data management
and visualization framework has been designed and imple-
mented. PostgreSQL and PostGIS are used to manage and

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

store GIS spatial data and metadata. GeoServer performs as the
map server, an ASP.NET web server is used as the MapBeing
server, OpenLayers is used for client side map rendering and
interaction with vector data.

Experiments have been performed for the use case demon-
stration of the proposed architecture using Open Source vector
data as well as comparison with one of the architectures which
sends all the vector data to the client side. The architecture has
been implemented as a web application in the managed .NET
runtime environment. There are several modes of operation in
the application so that user can select the required one from
the toolbar. In the MapService Mode which is the default one,
OpenLayers shows tile images obtained from the server no
matter how large the vector data volume is. In the Edit mode,
the image tile to be edited, can be selected and manipulated.
The selected image tiles vector data are obtained from the
server and after editing, it can successfully save the edited
vector data. User can also draw and save data as vector format
in the Drawing Mode. As the application does not retrieve the
whole vector data at a time, the response time is better than
conventional applications and bandwidth cost is also reduced.

In comparison with a production level legacy GIS solution
which consumes all the vector data from the server side, a
significant amount, which is about 23%, of the bandwidth
cost is reduced as a lower amount of vector data have been
communicated between the client and the server. Such outcome
demonstrates how MapBeing can effciently facilitate users
to publish and modify vector data without occurring much
bandwidth transmission.

II. BACKGROUND AND RELATED WORK

The GIS development has drawn attention of researchers
for its growing usage in business, research and education
etc. Hence, GIS researches focuses on efficiently vector data
publishing, analyzing, sharing and also modifying. In this
section, the most notable work on GIS has been highlighted.

Many definitions for the term GIS have been proposed in
the literature, each considering the functionality of the system
from diversified perspectives. All of those focus on three
different aspects: [5]

e GIS is a collection of computer tools to perform geo-
graphic analysis and simulations

e GIS is supported by a set of data structures and algo-
rithms to represent, retrieve and manipulate geographic
information

e GIS is a utility that helps people make decisions in tasks
related to geography.

In principle, GIS is a set of frameworks with underlying
computational techniques which supports complex data anal-
ysis and simulation of real world appliances in geographical
domains.

GeoHosting [4] proposed a WebGIS architecture called
GeoHosting as a Spatial Data Infrastructure (SDI). The main
objective of this architecture is to offer services supporting
the creation of a spatial data sharing system with possibility
to publish data for any user having access to the Web. As it is

developed focusing on the spatial data sharing compatibility,
it lacks the ability to modify the vector data.

TeraFly [15] is a high performance WebGIS. It uses In-
ternally Distributed Multi-threading method to achieve high
performance and semantic R-tree to search an object on both
spatial and semantic information. It gives a high speed hetero-
geneous data publishing architecture but it does not provide
much facility to modify large volume vector data efficiently.

R. Puri et. al. [14] developed a Parallel and Distributed
algorithm for large scale Polygon Overlay processing with the
help of MapReduce framework [6]. It can find the result of
a query consisting of two vector overlay layers with large
amount of vector data. It is also implemented on General
Purpose Graphics Processing Unit to accelerate flotaing point
operations during rendering. Although this algorithm can find
result by processing two vector overlay but cannot edit data of
those overlays.

F. Yin et. al. [18] proposed a WebGIS framework for Vector
Data sharing based on open source projects. It focused on
practical implementation of large vector data sharing and inter-
operability. The authors have divided this application into the
application layer, service layer, function layer and storage layer
using following open Source libraries: PostgreSQL, GeoServer,
OpenLayers and TileCache. As it is developed to facilitate
user for sharing large scale data, it does not consider the
modification of vector data on the map which is very important
for an interactive mapping system.

A Spatial Data Infrastructures (SDIs) has been implemented
in their paper by Steiniger et. al. [17]. The proposed archi-
tecture is based on Free and Open Source Software (FOSS)
[16] so that users can buy a full SDI with a limited cost. The
SDI is developed with Web Map Servers, Web-GIS Servers for
data processing, spatial DBMS for storage, registry/catalogue
and metadata software. In this architecture, a complete GIS is
proposed but interaction between vector data and users on the
map is not considered.

An Web based GIS System has been developed targeted for
the water resource management [7] on top of open source GIS
libraries. It is capable of publishing, storing vector data as
well as raster data. XMLParser is used here while sending and
receiving data format for communication between server and
client. This architecture was developed and applied to spatial
data management and utilized that data for problem analysis
and solving such as monitoring natural disasters, solving water
insufficiency in agricultural areas etc. The main part of this
work was used at GIS in water resource management field.
Hence this architecture does not help users to modify or to
create vector data from map.

From the above discussion, it has been found that the
manipulation of large vector data in WebGIS is still time and
data intensive. Currently, the browser itself does all the collab-
oration between GIS and vector data in spite of being unable to
handle large amounts of data because of limited resources and
low processing power. Hence, such GIS architecture for vector
data publishing is required which can keep a tight bound on
the data transmission and rendering time of the service.

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

III. MAPBEING ARCHITECTURE

In order to address the issues stated above, in this section,
a WebGIS architecture named MapBeing is proposed which
has the capability to edit and publish vector data without
triggering huge bandwidth consumption. This section provides
thorough details on how MapBeing manages to do so. First,
core modules of MapBeing is discussed followed by the policy
according to which, modules interact with one another.

A. Overview

In this section, a vector data manipulating and publishing
architecture for GIS solutions named MapBeing is proposed
which facilitates users with interactive capabilities of modifi-
cation, deletion, presentation, analysis and capture of spatial
representation of real-world features such as roads, buildings
and terrains. In order to perform such operations on vector
data, MapBeing transmits just the data of specific shapes which
is requested from the client side and thus shakes off a huge
amount of time during data transmission between the client and
server side. This section highlights the detailed architecture
of MapBeing and how it manages to reduce client-server
computational and communication overheads. The top level
view of the framework architecture is shown in Fig. 1. The
architecture is divided in three servers and one storage.

A new vector data manipulating and publishing architecture
for GIS solutions is proposed in this paper. GIS data set is
the spatial representation of real-world features such as roads,
buildings and terrains. The interaction, modification, deletion,
presentation, analysis and capture of vector data are all done
by GIS. For manipulating vector data, MapBeing sends just
the data of specific shape which is requested from the client
side.

The proposed architecture facilitates the modification of
large amount of vector data on the map and raster data which
are not possible to be handled by the browser. It also focuses
on the improving the rendering time issue in client side data
rendering. Finally, the facility to manipulate vector data is
provided as well in this new framework architecture.

| ClientSide |-====-=======22-2cocccomcoo o oo ooooooooomoo .

/ response 4
i MapBeing Server GeoServer i
| H
H request |
: H
i ;
' i
H - Vector data

|

;

| PostGIS

H

|

Fig. 1. Top Level View of MapBeing

B. Web Client

The web client, as shown in Fig. 1, listens to the user
interactions on the map and communicates those with the
MapBeing Server. This task is accomplished by OpenLayer
which receives the user requests and sends it to the MapBeing
server. Having completed the corresponding tasks, the response
from the MapBeing server is sent back to the user by the Web
Client. The MapBeing server is used here for the manipulation
purpose of the vector data. However, the OpenLayers directly
make service calls to GeoServer to display the data. It acts as
a transparent layer on the map which makes a canvas on it and
draws the shapes responded by the GeoServer.

C. MapBeing Server

The MapBeing server is responsible for connecting the
OpenLayers with the GeoServer. As a HTTP service, it has
the conventional task to provide web content to the browser
through the Internet and processing server scripts and sending
an appropriate response to client requests. However, the main
responsibility of the MapBeing server here is to process
user manipulation requests and sending those back to the
GeoServer. Different services of GeoServer are used for dif-
ferent purposes which will be mentioned later in this section.
Some of the services can be used directly from browser while
others require the MapBeing server to be involved in some of
its processing tasks. It takes co-ordinate points obtained from
user interaction in the map images through the OpenLayers,
gets the vector data information of co-ordinates after manipu-
lation and finally sends request back to the GeoServer.

D. GeoServer

The GeoServer [8] plays the most critical part in this
architecture as it establishes the communication between Map-
Being Server and Web Client. It also involves PostGIS in
the proposed architecture for storage purposes of manipulated
vector data. GeoServer provides these three following services:

1) Web Feature Service (WFS): WES provides an interface
for making requests to get geographical features. Two types
of WES have been used in this architecture. The first one
is generic WFS which allows only querying and retrieving
of features. Meanwhile, a transactional WFS (WFS-T) [8] is
also used which allows creation, deletion and modification of
those. It also processes HTTP request of clients and executes
appropriate operations to serve those.

2) Web Map Service (WMS): A standard protocol called
WMS has been utilized here to serve geo-referenced map
images over the Internet. These map images can be generated
by a map server using data from the GIS database. Although it
usually serves the map in bitmap format, vector graphics can
also be served in SVG or WebCGM format.

3) Web Coverage Service (WCS): Digital geospatial infor-
mation representing space time-varying phenomena is retrieved
by the WCS. It also provides access to coverage data in
web forms. It allows clients to choose portions of a server’s
information rather than the providing whole. The Web Browser
directly communicates with the GeoServer through WMS

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

service. The map images got from this service is displayed
on the browser. As these are the only images, these cannot
be manipulated directly like vector data. This is where the
MapBeing server is needed to process the clicked image
position to get the specific vector data. This is done by WFS-T
service of the GeoServer.

E. PostGIS Storage

The PostGIS database is used for vector data storage. It
provides data to GeoServer which exposes its services to the
user through the browsers. This solution lessens the tasks of the
browsers to manipulate vector data that automatically enhances
client-side performance.

FE Core Layers of MapBeing

The component stack of the proposed framework is repre-
sented in Fig. 2. It is a layered architecture where each of
those serves different responsibilities.

e User End layer

e Request Handler layer
e Service layer

e Data Provider layer

OpenLayer

| Edit Layer | | Drawing Layer | |Vec|or Map Layer | E: oegrle ES

Request

feature

o
e
5

2

Mector Data

Bend Drawn

Requept Handler

5 SaveVector(Data data)
Edit(Params params'

images

Request for Tile images
Response with some Tile

GeoServer,

WFS(Web Feature | WFS-T(Web Map WMS(Web Map
Servige) Service- Transaction] Service)
x

Fig. 2. Architecture of MapBeing

The User End layer abstracts the OpenLayers and interacts
with the users viewing locations in map. It has the responsibil-
ity to take user commands and show corresponding changes in
the map. The Request Handler layer processes user demands
and requests Service layer for required services appropriately.
The Service layer provides the three previously mentioned Geo
services to the User End directly or through Request Handler
and thus can be called as GeoServer layer. The Data Provider
layer stores vector data and supplies it to the GeoServer on
demand.

The first layer, named OpenLayers, consists of four com-
ponents: Edit layer, Drawing layer, Vector Map and Google
Map. OpenLayers is a transparent layer on the map where the

locations are drawn. It is a canvas drawn with points, lines,
rectangles and various other shapes representing the vector
data locations. Google Map is a service provided by Google
which is used here for the background of the vector data
locations in the browser. The Vector Map component requests
directly to the GeoServer with map b-box, zoom-level and
layer information as parameters. As a response, it gets some
tile images and places those on the map. The Edit and Drawing
layers are used for the map data manipulation. Both of these
components contact with Request Handler. The Edit layer
is responsible for editing map features on OpenLayers and
the Drawing layer is responsible for saving the manipulated
information.

Request Handler layer is the web server layer which is in
a sense, the middle layer between OpenLayers and GeoServer
Layer. It has the task to do the manipulation processes on
vector data. It consists of two components- Edit and Save
component. The Edit component takes user interaction infor-
mation on the OpenLayers tile images as input and provides the
vector data information about that area. It also makes all the
manipulation of the data. The Save Vector component takes
the drawn data information about users and saves it using
GeoServer Service.

The third layer is the GeoServer layer. It provides the WES,
WMS and WCS services to the User End and Request Handler
layer. And it also offers WFS-T which is an advance version of
WES service. For manipulation task WFS and WFS-T services
are used. These services are accessed through Request Handler
layer. The viewing is done by using WMS Service. It is directly
approached by the OpenLayers.

The fourth layer of MapBeing is Data Provider layer. It is
the storage layer and the warehouse of the framework. The
vector data which can also be termed as geographical data
is stored here. The database used for this storage is PostGIS
database.

In principle, User End layer does the user interactivity with
vector data, Request Handler receives requests and sends re-
sponses to User End layer, Service layer is responsible for ren-
dering, manipulating of vector data and finally Data Provider
stores user data. This four layered architecture achieved the
minimization of data bandwidth cost of manipulation of vector
data in web based GIS.

IV. EXPERIMENT AND RESULT

In this section, experimental setup for the proposed WebGIS
system architecture is discussed followed by the results.

The proposed architecture is based on free and open source
software where MapBeing used OpenLayers as client side,
GeoServer as web server and PostGIS as storage for spatial
data. MapBeing also has a server to process XMLHTTP
requests from OpenLayers. OpenLayer generates requests to
GeoServer with map’s view-port and zoom-level as request
parameters for tile images. GeoServer also generates request
to PostGIS for vector data according to request parameters and
creates tile images of those vector data on the fly. Then the
tile images are sent to OpenLayers to render those images on
the map-overlay. When OpenLayers need a specific shape data

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

based on user interaction such as mouse click, it requests via
MapBeing server to GeoServer.

The detailed technical description is given below. OpenLay-
ers is an open source object oriented mapping library based
on HTMLS5 canvas element. It also has capability to draw with
SVG (Scalable Vector Graphics) techniques. It is divided into
three parts as Map layers, Edit layer and Drawing layer. Map
layers is responsible for displaying tile images on above base
layers such as Google Maps, Open Street Maps or Microsoft
Virtual Earth. More than one layer can be added at a time
such as Road Map, Administrative Map, River Map, and Rails
Way Map of a country. For displaying base map, OpenLayers
uses predetermined API of corresponding map providers and
displays maps of vector data based on OpenLayers request
routed to GeoServer for tile images.When user clicks on the
tile images to edit a shape, edit layer request GeoServer with
required parameters via MapBeing server for a specific shape’s
vector data. By analyzing parameters, GeoServer can uniquely
identify a shape and sends vector data of that shape. This will
facilitate users to modify properties of spatial shape data with
the help of edit layer. After editing, the edit layer sends mod-
ified data to GeoServer via MapBeing server then GeoServer
store this data in PostGIS. Drawing layer is responsible for
creating new map with just sketching of Lines, polylines,
polygons and points. After drawing, it sends drawn data to
GeoServer via MapBeing server and GeoServer stores this to
PostGIS by creating new shape file.

MapBeing uses ASPNET web application as MapBeing
server where OpenLayers sends user modified or drawn data.
The MapBeing server receives those data from client side and
sends it to GeoServer after pre-processing. Then GeoServer
modifies those data and sends to PostGIS. With the help of
WES |, GeoServer sends data to MapBeing server as user
request from client side with OpenLayers. After editing those
received data, GeoServer updates spatial table in PostGIS.
MapBeing server also has a management module to commu-
nicate with GeoServer and OpenLayers. It has a processing
module to process in coming request from client-side and
added extra information to fit the request parameters for
requesting GeoServer. It also has a data management module
by which it maintains data uploading and data authorization.
GeoServer has been customized so that MapBeing server can
use it to upload user data. This customization has been done
by modifying the catalog.xml which is made from GeoServers
data source point to our data storage where MapBeing server
uploads users data.

PostGIS is a spatial database extender for PostgreSQL
object-relational database. It adds support for geographic ob-
jects allowing location queries to be run in SQL. GeoServer
just execute some query as MapBeing severs request. After
receiving PostGISs response, GeoServer sends feature data to
OpenLayers through MapBeing server.

OpenSource vector data is used to test how MapBeing
performs in real life operations. All the experimental data
was downloaded from http://www.gadm.org/country or from
GeoServer’s default provided set of data. USA population data,
comes with GeoServer installation, named ’topp:states’ has
been used to check modification capability of MapBeing. In

(= @ # | [localhost:2926/App/EditLayerNe

s MBE|S 4|3 ¢ L]

Fig. 3. Web Map Service Layer

€7 C A laost 256y ELayerie

Lt

|

oy
!

oA BB/ q[Tab]Yaed

Fig. 4. Web Map Service Layer (Large Data Set)

order to compare MapBeing’s performance, a legacy GIS sys-
tem [18] has also been implemented alongside. The Building
[1] data is used to show that MapBeing does not consider data
size to process them. Windows 8.1 x64 operating system, Intel
Core 2 Duo E8400 @3.00GHz and 2.00 GB RAM were used
as experimental platform of MapBeing.

MapBeing can be run in several mode of operations. User
can select a mode to work with from toolbar. There is a layer
chooser tool to select a layer to work with. Different types of
map such as Google Map, Open Street Map are also available
as base layer.

By Default, MapBeing remains in Map Service mode dis-
played at Fig. 3. When a user wants to see a layer, OpenLayers
Map Service [10] requests to GeoServer for that layer’s tile
images. Then GeoServer gives responses to OpenLayers and
OpenLayers show tile images where they should be displayed.

The example of large data rendering in the map is shown in
Fig. 4. Without considering volume of vector data MapBeing
is capable of display tile images on the map. Vector data

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

(126MB)

asia/indonesia-140908.shp.zip

- Number | Bandwidth
.shp file of in
ESRIs data name-size | Source of Vector Data size Shanes : .
W) apes MapBeing
™) (W/N)
USA population Default
(202 KB) Geo Server installation 183 KB 49 003
Vireinia Roads http://download.geofabrik.de/
el northamerica/us/virginialatest 272 MB 755483 .0003
(349 MB) ;
.shp.zip
gis.osm roads . Lo
(14.6 MB) http://www.divagis.org/gdata 7.68 MB 50000 .0001
bangladesh latest.osm http://download.geofabrik.de/
(12.5 MB) asia/bangladesh.html 102 MB | 4000 003
India Roads(328 MB) | Dup//www.geofabrikdefdata/ | \ip | 85516 | 003
shapefiles.html
Indonesia Roads http://download.geofabrik.de/ 88 MB 344713 10003

TABLE 1.

€« C # [1localhost2926

Blolald Wik e @
=l
Temecrine

Fig. 5. Edit Layer
<« C M | [localhost2926/App,
v 4 BBl F1Wd & B[w We @
=l

Data CC-By-SA by OpenStreetMap

Terme af Use

Fig. 6. Drawing Layer

editing mode is shown at Fig. 5. When User clicks to go
to edit a shape then OpenLayers Edit Service [10] receives
click position, Maps’ bbox, layer’s information and request
to MapBeing server. After analyzing the request, MapBeing
server returns requested vector data as Json format to
OpenLayers. With these data, user can modify and after
modification clicks save button. After that OpenLayers save
strategy sends edited data to MapBeing server.

COMPARISON OF DOWNLOADED DATA SIZE BETWEEN MAPBEING AND CLIENT SIDE RENDERING ARCHITECTURE

MapBeing vs Legacy Implementation on Vector Data Manipulation

404
E @ = MapBeng Create [
35404 | == MapBeing Edit ’
11" = Legacy Implementation Edit ’,’
3404 K
1 +
-] S
] ‘
§2‘5e+u4 —_ /
=] '
F] K4
8 22404 ¢
N M
] L
T 150404 . ,’A
£ 1 -
i] »”* -
¥ te+04 o e
o] s -
] . -
] e -)
5,000 p- “~ p—
7 ey - .,.--
3 __--"" - o s
e B a= e ————t
-S'DDD _-‘ T ‘ T T ‘ T T T ‘ T T T | T T T | T
12404 2404 Te404 4404 Se404
Number of Shapes
Fig. 7. MapBeing Performance in Creation and Modification

Another value added service of MapBeing is the drawing
capability shown at Fig. 6. User can draw shapes and by using
OpenLayers Save Strategy [10] user can save drawn data as
vector format. User also can select drawing tools from toolbar
situated on above of map window. Lines, Polygons, Point tools
are available to draw.

There is a comparison at Table 1 on the basis of downloaded
amount of data between server side rendering GIS and client
side rendering GIS architecture. User can publish, analysis and
manipulate vector data on the map by client side rendering
GIS. But at the first time of map display, client side rendering
GIS downloads whole .shp file from server side to client. On
contrary MapBeing downloads just few tile images rendered in
the server side. To compare downloaded data size, Comparison
Matrix (CM) was defined. From data storage, numbers of shape
are known from ESRI’s shapefile [12] and its size:

N = number of shapes in .shp file, CM = W/N

W = size of .shp file in Mega Byte(M B)

JAHANGIRNAGAR UNIVERSITY JOURNAL OF INFORMATION TECHNOLOGY

The larger value of CM means that more data should be
downloaded from client side to server side. Moreover, as it can
be seen in Table 1, client side rendering architecture download
whole .shp file from server side to client side but MapBeing
does not do that. MapBeing download only CM sized vector
data as per user request. As MapBeing does not consider data
size, it performs well even when data size increases. It is also
prominent from the Fig. 7 that MapBeing shows linear growth
of data transmission in the case of random shape file creation
and modification. On the other hand, legacy implementation
shows exponential growth in transmitted data volume on the
same ocassion. Overall, MapBeing manages to improve the
data rendering time upto 23% in comparison with legacy im-
plementation. Such behavior proves that, MapBeing is capable
to scale from the aspect of large volume of geospatial data
publishing and manipulating triggered by the users.

On the basis of simulation and result analysis discussed
above, MapBeing is efficient in downloading vector data file
for manipulation purposes such as create, edit and delete. It
downloads only the corresponding shape’s vector data at time
when user wants to edit instead of downloading the whole
vector dataset from the server. Thus the proposed architecture
facilitates both the manipulating and publishing of geospatial
data on the web based GIS as well as keeping the data
transmission level significantly lower.

In principle, the proposed architecture handles the problem
of large data transfer in publishing map on the web by
user interaction based data provisioning techniques rather than
providing the whole map data at once. The feature toolbar of
manipulating the vector data on the map is also presented here.
The WMS service of GeoServer is used in this architecture
for generating the tile images to be shown on the map by
OpenLayers. On the basis of user interaction on a position of
the map, WEFS service is used to get the corresponding vector
data. Thus rendering time and data transmission bandwidth are
minimized as well. Finally WFS-T is used to save the manip-
ulated vector data on the server side. From the experiment, it
has also been shown that minimal amount of data has been
transfered between client and server side.

V. CONCLUSIONS

WebGIS has gained popularity because of the consistent
availability and use of geographic information everywhere,
especially in desktop and mobile clients. However, a barrier
in the mainstream adoption of WebGIS is the transmission
of large vector dataset between server and client sides. The
unavailability of data manipulation platform in the web based
map is another limitation of currently available WebGIS
solutions as well. To address these problems, MapBeing is
proposed in this work which facilitates both manipulating and
publishing vector data on the web based GIS. From the experi-
mental results, it is also observed that, MapBeing triggers very
low amount of vector data transmission between client and
server sides. Thus, MapBeing facilitates users with a vector
data manipulation and publishing framework that is efficient

as well. The future scope of this research includes providing of
a multiple user based map manipulation interface for the same
set of vector data. Moreover, this research only focuses on
shape file format, in future, other types of vector data format
such as GeoJSON [3], KML [2] can be incorporated.

VI. ACKNOWLEDGMENT

This research endeavor is funded by the UGC Research
Grant, 2014-15 by University Grant Commission, Bangladesh
with the reference no: Reg/Prosha-3/2015/48750

REFERENCES

[1] Toulouse: streets, railways, waterways, July 2014.
[2] S Bacharach. Ogc approves kml as open standard, 2008.

[3] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub,
and Christopher Schmidt. The geojson format specification, 2008.

[4] Karel Charvat, Petr Horak, Martin VIk, Jachym Cepicky, and Stepan
Kafka. Geohosting—publish your spatial data yourself. IST Africa,
Kampala May, 2009.

[S] GEOG4340 Q Cheng. Geographic information system. 1995.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107—
113, 2008.

[7] Prattana Deeprasertkul and Royol Chitradon. An internet gis system
to support the water resource management. information science, 1(01),
2012.

[8] Justin Deoliveira. Geoserver: uniting the geoweb and spatial data
infrastructures. In Proceedings of the 10th International Conference
for Spatial Data Infrastructure, St. Augustine, Trinidad, 2008.

[9] ESRI ESRI. Shapefile technical description. An ESRI White Paper,
1998.

[10] Erik Hazzard. Openlayers 2.10 beginner’s guide. Packt Publishing Ltd,
2011.

[11] Leo Hsu. Postgis in action, 2011.

[12] Feng LIU, Ji-xian ZHANG, and Hai-tao LI. Research and application of
shp file format in land over/use map updating [j]. Science of Surveying
and Mapping, 6:042, 2006.

[13] Moshiur Moshi, Nadia Nahar, Rayhanur Rahman, and Kazi Sakib.
Mapbeing: An architecture for manipulating and publishing vector data
in web based geographic information system. In Software, Knowledge,
Information Management and Applications (SKIMA), 2014 8th Interna-
tional Conference on, pages 1-7. IEEE, 2014.

[14] Satish Puri and Sushil K Prasad. Efficient parallel and distributed
algorithms for gis polygonal overlay processing. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, pages 2238-2241. IEEE Com-
puter Society, 2013.

[15] Naphtali Rishe, Shu-Ching Chen, Nagarajan Prabakar, Mark Allen
Weiss, Wei Sun, Andriy Selivonenko, and D Davis-Chu. Terrafly:
A high-performance web-based digital library system for spatial data
access. In ICDE Demo Sessions, pages 17-19, 2001.

[16] Stefan Steiniger and Erwan Bocher. An overview on current free
and open source desktop gis developments. International Journal of
Geographical Information Science, 23(10):1345-1370, 2009.

[17] Stefan Steiniger and Andrew JS Hunter. Free and open source gis
software for building a spatial data infrastructure. In Geospatial free
and open source software in the 21st century, pages 247-261. Springer,
2012.

[18] F Yin and M. Feng. A webgis framework for vector geospatial data
sharing based on open source projects. In Proc. of 2009 International
Symposium on Web Information Systems and Applications (WISA09),
pages 124—127, May 2009.

