
Optimizing Software Design Migration from
Structured Programming to Object Oriented

Paradigm

Saeed Siddik
Institute of Information Technology

University of Dhaka, Bangladesh
siddik.saeed@gmail.com

Alim Ul Gias
Institute of Information Technology

University of Dhaka, Bangladesh
alimulgias@gmail.com

Shah Mostafa Khaled
Institute of Information Technology

University of Dhaka, Bangladesh
khaled@univdhaka.edu

Abstract—Several industries are using legacy softwares, devel-
oped with Structured Programming (SP) approach, that should
be migrated to Object Oriented Paradigm (OOP) for ensuring
better software quality parameters like modularity, manageability
and extendability. Automating SP to OOP migration is pivotal as
it could reduce time that take in the manual process. Given this
potential benefit, the issue is yet to be addressed by researchers.
This paper addresses the scenario by modeling this problem as a
graph clustering problem where SP functions and function calls
are vertices and edges respectively. The challenge evolving the
problem is to find optimized clusters from graphs. To aid this
problem, certain heuristic algorithms based on Monte Carlo and
Greedy approaches are being developed. The proposed algorithms
have been tested against a collection of real and synthetic data.
The numerical results show that greedy algorithms are faster and
produced better results than the average performance of Monte
Carlo based approaches.

Keywords. Legacy Code, Software Design, Call Graph, DSM,
Graph Clustering

I. INTRODUCTION

A good number of software are still being used in indus-
tries which were developed decades earlier using Structured
Programming (SP) approach. These software often go out of
support and termed as Legacy Software. The source code of
such software is commonly referred as Legacy Code which
becomes unmanageable when it grows too large [1]. Large
and complex programs are easier to maintain if developed with
Object Oriented Paradigm (OOP) that offers better re-usability,
modularity, manageability and extendability by means of en-
capsulation, inheritance and polymorphism.

In case of bug solving or feature enhancement and integra-
tion, legacy codes demand much more time than OOP ones.
Such difficulties have their consequential business impacts
and thus many industries, dependent on legacy softwares, are
facing the issue of business sustainability. Possible way outs
could be re-designing the whole product from the scratch or
manual SP to OOP design migration which could be error-
prone and time consuming. This research intends to propose
an approach for automatic SP to OOP design migration.

To analyze the problem we formulate the scenario in
terms of a graph where each function written in SP code is
represented as a vertex, and a function call is represented
as a directed edge. This gives us a connected directed graph

TABLE I. EXAMPLE OF A SP LEGACY CODE, ITS CALL GRAPH AND
OPTIMAL CLUSTERING

function5(....) function3(....)
f1 f2 f4

f3

f5

(a) Call Graph

f1 f2 f4

f3

f5

(b) Underlying undirected graph

f1 f2 f4

f3

f5

C1

C2

(c) Optimal Clustering

{ {
... function2();

} ...

function4(....) }
{

function5();
...

}
function1(....)

function2(....) {
{ function2();

function4(); function3();
... }

}

referred as Call Graph [2], [3]. The adjacency matrix rep-
resentation of the call graph produces a 0-1 matrix. The
matrix is known as Design Structure Matrix or Dependency
Structure Matrix (DSM) [4] which is widely used in industrial
engineering for a good variety of applications.

The hypothesis that the methods of a same class will
call each other more frequently than the number of calls
between methods of different classes has been used on the
call graph. This hypothesis is based on encapsulation [5]
that says attributes and methods of same class or interface
are more interrelated than attributes and methods of different
classes or interfaces [6]. The call graph has an underlying
undirected graph which is used to search for vertex clustering
having objectives to maximize number of intra-cluster edges
and minimize number of inter-cluster edges.

An optimal clustering of the call graph produces number of
non-overlapping vertex clusters that represent groups of closely
related functions in the SP code. This is used as the clue for
migrating the underlying SP design to OOP, where each cluster
in the call graph represents a class or interface. The migration
is simple as calls between methods of the same class do not
change in the new design. However, calls between methods
of two different clusters has to be re-written incorporating the
issue of making call through proper interfaces between classes.

Table I presents a sample SP legacy code, its corresponding
call graph, underlying undirected graph of the call graph and
an optimal clustering in of the undirected graph.

A mathematical definition of the optimal cluster finding
problem has been formulated in terms of an Integer Program
(IP)[7]. It has been realized that the solution to the IP is
computationally hard, and therefore different heuristics are
applied to get a near optimal solution. A number of randomized
and greedy heuristic algorithms has been proposed to assist
optimal clustering. The objective function of IP along with
conventional Clustering Co-efficient (CC) [8] and Character-
istics Path Length(CPL) [9] are used to assess quality of
clustering.

The assessment involved 3 data instances, 2 of which were
collected from real software and the other is synthetically
generated. The results show that greedy huristics were faster
and produced better results than the average performance of
Monte Carlo based approaches. Moreover, it has been observed
that proposed greedy algorithms are 12.8% better in terms of
average Clustering Co-efficient (Equation 1), 31.02% better in
terms of average Characteristics Path Length (Equation 2)and
25.73% better in terms of average Kal-index (Equation 3) than
Monte Carlo algorithms.

Rest of the paper is organized as follows: Section II
reviews the background of the problem and the relevant work
available in existing literature. A mathematical formulation of
the problem is presented in Section III. Section IV presents
five variations of our Monte Carlo based heuristics, and three
variations greedy algorithms. Numerical results and analysis
has been presented in Section V. Section VI concludes the
paper with future research direction.

II. BACKGROUND

Automatic SP to OOP design migration has been rarely
addressed as a direct research problem in the existing literature.
Although plenty of work has been done with Graph Clustering
[10] and DSM [4], existing graph clustering methods mainly
focus on the Euclidean distance, but largely ignore vertex
connectivity where every distances between two vertices’s
are same. On the other hand, the researches involving DSM
focuses on searching function calls that can be triggered
parallely.

Automatic migration from code to design was introduced
in [11]. The work converts a COBOL program to a Object
Oriented design document. Maqbool et al. reviewed hierarchi-
cal clustering research in the context of software architecture
recovery and modularization [12]. Moreover, they analyzed
the clustering process of multiple clustering algorithms using
multiple criteria and showed how arbitrary decisions taken by
these algorithms affect the quality of the clusters. In 2011
Dineshkumar et al. presented an empirical approach to migrate
from Structured Programming Code to Object Oriented Design
[13]. Their work introduced a new technique for code to design
migration which creates agglomerative cluster using Jaccard
distance matrices.

Zhou et al. proposed a graph clustering algorithm named
SA-Cluster based on similar attribute using unified distance
measure [14]. This method partitions a large graph associated
with attributes into k-clusters so that each cluster contains
a densely connected sub-graph with homogeneous attribute
values. Aggarwal et al. proposed an algorithm to find appro-
priate sets of clusters and dimensions using medoid technique

based on Euclidean coordinate points and preceded by feature
selection [15].

Bezdek et al. reviewed two clustering algorithms (hard
c-means [16] and single linkage) and three indexes of crisp
cluster validity (Huberts statistics, the Davies-Bouldin index,
and Dunns index) [17]. Their work illustrates two deficiencies
of Dunns index [18] that make it overly sensitive to noisy
clusters. They proposed several generalizations of those de-
ficiencies which are not as brittle to outliers in the clusters.
Definitions regarding cluster in a graph and measures of cluster
quality were reviewed in [10]. This work also presented global
algorithms for clustering the entire vertex set of an input graph
and discussed the task of identifying a cluster for a specific
seed vertex by local computation.

Hossain et al. presented an analytical report on design
structure of open source scientic computing software [4].
They used a number of architectural complexity metrics and
DSM technique to analyze the design structure. Their analysis
involved Automatic Differentiation (AD), Linear Programming
(LP) and Mixed Integer Programming (MIP). They have used
DSM to present functions that are explicitly implemented in
the software under consideration (denoted as user function)
and functions that are part of software libraries. Those DSM
qualities are measured by characteristic path length, clustering
co-efficient, nodal degree, strongly connected components,
propagation cost, etc. [9].

Review of existing literature show that none of the work
directly proposed a method that focus on converting SP code to
detailed object oriented design. We propose a new approach to
migrate SP code to OOP design by means of optimal clustering
form a call graph. To measure the quality of the clusters a
new metric discussed in Section III is proposed. Two existing
metrics CC and CPL were also used to measure the quality of
clustering.

CC is a measure of degree to which nodes in a graph
tend to cluster together [8], [9]. In this paper, local clustering
coefficient is used to measure CC (Ψ) index. The local clus-
tering coefficient of a vertex (node) in a graph quantifies how
close its neighbors are to being a complete graph. Suppose,
a graph G = (V,E). An edge eij ∈ E connects vertex
vi ∈ V with vertex vj ∈ V . The neighborhood Ni for a
vertex vi is defined as its immediately connected neighbors:
Ni = {vj : eij ∈ E ∩ eij ∈ E}. CC Ψ of an undirected graph
is defined as-

Ψ =
1

N

N∑
i=1

Ψi where Ψi =
2
∣∣{eij : vj , vk ∈ Ni, ejk ∈ E}

∣∣
Ki(Ki − 1)

(1)

In Equation (1) Ψi denotes the CC (Ψ) of node i and ki is
number of nodes connected to node i, and ni is actual number
of edges within ki adjacent nodes.

CPL is the distance between pairs of vertices in a connected
undirected graph cluster [9]. Let d(vi, vj) denote the shortest
distance between nodes vi and vj , where {v1, v2} ∈ V in an
unweighed undirected graph G . If v1 = v2 or v2 cannot be
reached from v1 then d(vi, vj) = 0, otherwise d(vi, vj) ≥ 1.
Based on these definitions, CPL (χ) of an undirected graph
can defined as-

χ =
1

N(N − 1))
·
∑
i 6=j

d(vi, vj) (2)

III. MATHEMATICAL FORMULATION OF THE PROBLEM

Let G(V,E) be the underlying undirected graph of a call
graph. V and E be the set of vertices and edges respectively,
with n = |V | ,m = |E|. We define variables xe and ye
corresponding to each edge e ∈ E, Cv corresponding to each
vertex v ∈ V . G may have at most n clusters, where each
vertex in the graph will be in a distinct cluster. A vertex,
therefore, may potentially be in one of n clusters. The variables
are defined as follows:

xe ∈
{

1 if e is an intra-cluster edge
0 otherwise

ye ∈
{

1 if e is an inter-cluster edge
0 otherwise

zkl ∈
{

1 if vertex k belongs to cluster l
0 otherwise

Cj ∈
{

1 if vertex j is the head of a cluster
0 otherwise

The problem of maximizing intra-cluster edges, minimizing
inter-cluster edges, and maximizing the number of clusters can
be formulated as follows:

Max
∑
i

xi −
∑
i

yi +
∑
j

| Cj |, ∀i=1,..,m and j=1,..,n (3)

Subject to: xi + yi = 1 ∀i=1,2,...,m (4)

n∑
l=1

zkl = 1 ∀k=1,2,...,n (5)

n∑
l=1

zkal · zkbl = x(a,b) ∀(a,b)∈E (6)

Cl =
⋃
k

zkl ∀k=1,2,...,n (7)

The objective in Equation (3) maximizes the number of
intra-cluster edges and clusters in the graph, and minimizes
the number of inter-cluster edges. Equation (4) ensures that
an edge can be exclusively an intra- or inter-cluster edge.
Equation (5) ensures that each vertex must belong to a cluster.
Equation (6) ensures that an intra-cluster edge must have its
both endpoints belonging to the same cluster. Equation (7)
defines the variable Cj as a cluster head, if any vertex belongs
to its respective cluster.

IV. PROPOSED HEURISTIC ALGORITHMS

Algorithms 1 to 5 present five variations of Monte Carlo
schemes that have been applied. The first variation assumes
a fixed number of clusters (C) and assigns each vertex to
those clusters randomly. The second variation randomly picks
a vertex which is assigned to its first neighbor cluster if exists,
otherwise the vertex is made the head of a newly created
cluster. The third variation randomly selects a vertex pair and
if any cluster exists on either vertices’ first neighbor, both
vertices are assigned to that cluster. Otherwise both vertices
are made head of two new clusters.

The fourth variation randomly picks an edge ei ∈ E and if
any cluster exists on either end point’s first neighbor, both end

points are assigned to that cluster. Otherwise both endpoints
are made head of two new clusters. This algorithm initializes√
|NumberofV ertex| number of cluster and processes all

edge-end-points by finding first neighbor cluster. In each of
those variations the Kal (κ), CC (Ψ) and CPL (χ) is measured
for those clusters.

Algorithm 1: MC-1
Input: Call Graph G(V,E)
Output: Clustering C, Kal (κ), Clustering Coefficient (Ψ), Characteristics

Path Length (χ)
Begin
Assume we have n =

√
|V | number of clusters C1, C2, C3.....Cn

for each vertex v ∈ V do
Generate a random number i ∈ [0, |V |] for vertex v
Assign v to cluster Ci

end for
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 2: MC-2
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
ϑ← V
while ϑ 6= φ do

Randomly pick vertex v ∈ ϑ
ω be the set of clusters, ∃u∈ωj (u, v) ∈ E , ∀ωj ∈ ω
if ω = φ then

Create new cluster Ci
Ci ← Ci ∪ {v}

else
Randomly pick Ci ∈ ω
Ci ← Ci ∪ {v}

end if
ϑ← ϑ \ {v}

end while
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 3: MC-3
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
while All vertex v ∈ V are not assigned to any cluster do

Randomly pick vertex pair {v1, v2} ∈ V
if v1 ∈ Ci and v2 unassigned to any cluster then
Ci ← Ci ∪ {v2}

else if v1 unassigned to any cluster and v2 ∈ Cj then
Cj ← Cj ∪ {v1}

else if v1 and v2 both unassigned to any clusters then
for each νi ∈ {v1, v2} do

ω be the set of clusters, ∃u∈ωj (u, νi) ∈ E , ∀ωj ∈ ω
if ω = φ then

Create new cluster Ci
Ci ← Ci ∪ {νi}

else
Randomly pick Ci ∈ ω
Ci ← Ci ∪ {νi}

end if
end for

end if
end while
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 4: MC-4
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
ξ ← E
for each edge e ∈ ξ do

Randomly pick an edge e ∈ ξ
Assume v1 and v2 be the two end points of e
if v1 ∈ Ci and v2 unassigned to any cluster then
Ci ← Ci ∪ {v2}

else if v1 unassigned to any cluster and v2 ∈ Cj then
Cj ← Cj ∪ {v1}

else if v1 and v2 both unassigned to any clusters then
for each νi ∈ {v1, v2} do

ω be the set of clusters, ∃u∈ωj (u, νi) ∈ E , ∀ωj ∈ ω
if ω = φ then

Create new cluster Ci
Ci ← Ci ∪ {νi}

else
Randomly pick Ci ∈ ω
Ci ← Ci ∪ {νi}

end if
end for

end if
ξ ← ξ \ {e}

end for
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 5: MC-5
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
Fix initial number of clusters Ci=1,...,n to n =

√
|V |

Randomly pick unique vertex vi ∈ V , and a make one-to-one correspon-
dence assignment of vi to Cj , where i, j = 1, 2, 3...n.
repeat

ξ1 ← E
Randomly pick

√
|ξ1| edges from ξ1 in ξ

ξ1 ← ξ1 \ ξ
repeat

Randomly pick an edge e ∈ ξ
Assume v1 and v2 be the two end points of e
if v1 ∈ Ci and v2 unassigned to any cluster then
Ci ← Ci ∪ {v2}

else if v1 unassigned to any cluster and v2 ∈ Cj then
Cj ← Cj ∪ {v1}

else if v1 and v2 both unassigned to any clusters then
for each νi ∈ {v1, v2} do

ω be the set of clusters, ∃u∈ωj (u, νi) ∈ E , ∀ωj ∈ ω
if ω = φ then

Create new cluster Ci
Ci ← Ci ∪ {νi}

else
Randomly pick Ci ∈ ω
Ci ← Ci ∪ {νi}

end if
end for

end if
remove the edge e from ξ

until ξ 6= φ
until all vi ∈ V are assigned to a Cj ∈ C
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 6: Greedy-1
Input: Call Graph G(V,E)Characteristics Path Length
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
ν ← V
for each vertex v ∈ ν in decreasing order of vertex degree do

if (v, ui) ∈ E and ui ∈ Cj : for any i = 1...|V |, j = 1...|C| then
Cj ← Cj ∪ {v}

else
Create new cluster Ck
Ci ← Ci ∪ {v}

end if
ν ← ν \ {v}

end for
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 7: Greedy-2
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
ν ← V
for each vertex v ∈ ν in decreasing order of vertex degree do

if v /∈ Ci, i = 1...|C| then
Set ν1 := φ
ν1 ← ν1 ∪ {v}
for each (v, uj) ∈ E, j = 1...|V | do

if uj /∈ Ck , k = 1...|C| then
ν1 ← ν1 ∪ {uj}

end if
end for
Create new cluster C′
for each (vj) ∈ ν1 do
C′ ← C′ ∪ {vj}

end for
ν ← ν \ ν1

end if
end for
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 8: Greedy-3
Input: Call Graph G(V,E)
Output: Clustering C, Kal(κ), Clustering Coefficient(Ψ), Characteristics

Path Length (χ)
Begin
Fix initial number of clusters Ci=1,...,n to n =

√
|V |

Pick unique vertex vi ∈ V in decreasing order of vertex degree and a make
one-to-one correspondence assignment of vi to Cj , where i, j = 1, 2, 3...n.
for each edge e ∈ E do

Assume v1 and v2 be the two end points of e
if v1 ∈ Ci and v2 unassigned to any cluster then
Ci ← Ci ∪ {v2}

else if v1 unassigned to any cluster and v2 ∈ Cj then
Cj ← Cj ∪ {v1}

end if
end for
Calculate κ, Ψ, χ using clustering scheme C and equations (1), (2) and
(3) respectively
End

Algorithm 6 to 8 present greedy based huristics that have
been applied. The first algorithm selects each of vertices vi ∈
V in descending order of their nodal degree. After selection, a
vertex is assigned to its adjacent neighboring cluster if exists.
Otherwise that vertex is made the head of a new cluster.

TABLE II. NUMBER OF POTENTIAL CLASSES GENERATED BY
DIFFERENT HURISTICS ALGORITHMS

Data MC1 MC2 MC3 MC4
BFT 3 2 3 1

RBIo 7 7 7 2
Synth 2 2 2 2
Data MC5 G1 G2 G3
BFT 3 5 8 7

RBIo 8 5 14 8
Synth 3 1 2 3

The second algorithm picks each of vertices vi ∈ V
in descending order based on nodal degree and allocate the
adjacent vertex including itself to a new cluster. Finally the
third algorithm initializes

√
|NumberofV ertex| number of

cluster and select each of vertices vi ∈ V in descending order
based on nodal degree. In this algorithm, if one edge-end-point
is exists at any cluster than assign the other end-points to the
same cluster.

V. EXPERIMENTAL SETUP AND RESULTS

Algorithms presented in Section IV were implemented
using C++ programming language on 32bit Linux Mint15
machine with Intel Core-i3 processor, 4GB RAM. We have
reported experimental results on 3 problem instances. Instance
BFT and RBIo [4] have been generated from two scientific
research softwares, and the other instance Synthetic1 is syn-
thetically generated. Number of functions and number of calls
in the dataset BFT, RBIo and Synthetic1 are (14, 31), (61, 372)
and (6, 7) respectively. Table II reports the number of potential
classes generated by different huristics algorithms for those
experimental datasets.

Table III reports the computational running time in mi-
crosecond. MC algorithms were executed 1000 times on each
of the instances and the total execution times have been
presented. According to instance BFT MC-3 is 34.66% faster
in average than other MC algorithms. Greedy algorithms, since
they has been executed only once, convincingly outperformed
MC algorithms. In terms of computational time Greedy-2
is 0.59%, and 14.20% faster than Greedy-1 and Greedy-3
repectively.

The results of all MC algorithms for instance BFT is
presented in Fig. 1; subsection (a),(b),(c) represent CC, CPL
and Kal index respectively. Output results are displayed using
boxplot diagram where every box focuses the majority portion
of the proposed result. The solution value does not vary signif-
icantly among all the instance run except MC-1 algorithm. For
instance BFT the average and best result of (Ψ), (χ) and (κ)
are (0.22194, 0.458333), (1.642, 0.7), and (5, 17) respectively.
The largest and shortest running times of this instance are
19819 microseconds and 11855 microseconds.

Fig. 2 represents the best and average result of MC algo-
rithms in contrast to Greedy algorithms. We see that the Greedy
algorithms produce better result than the average performances
of MC algorithms, and are almost closest of MC algorithms
best results. Sign (∗), (x), and (+) denote the average result of
MC, best result of MC and optimal result of Greedy algorithms
respectively.

The comparison results between MC and Greedy algo-
rithms on the experimental instances are given in Table IV, V
and VI which are prepared from instance BFT, instance RBIo,

TABLE III. RUNNING TIME (IN MICROSECONDS)

Data MC1 MC2 MC3 MC4
BFT 15152 12316 11855 19819

RBIo 1304418 1510649 1373883 3681185
Synth 12747 8248 29793 33737
Data MC5 G1 G2 G3
BFT 16571 193 169 170

RBIo 2146621 42238 23232 16598
Synth 8822 56 50 48

TABLE IV. MC1-MC5 AND GREEDY1-GREEDY3 ALGORITHMS ON
BFT

Algorithm CC CPL KL
Average Best Average Best Average Best

MC1 0.23542 0.23148 3.0810 2.0873 -5 5
MC2 0.23738 0.13888 1.224 1.7651 5 14
MC3 0.22513 0.16666 1.182 3.1868 5 14
MC4 0.19129 0.23809 1.613 1.026 11 16
MC5 0.2219 0.11111 1.197 1.3481 5 13
Greedy1 0.324074 0.98666 13
Greedy2 0.3925 0.76667 1
Greedy3 0.38888 1.01334 7

and instance Synthetic respectively. Each table presents the
values of (Ψ), (χ) and (κ) of every huristics algorithms. Those
tables and diagram show that the proposed Greedy algorithms
are 12.8%, 31.02%, and 25.73% better than proposed Monte
Carlo algorithms in terms of CC (Ψ), CPL (χ) and Kal index
(κ) respectively.

VI. CONCLUSION AND FUTURE WORK

The work presented in this paper has the following areas
of development: Firstly, modeling the SP code as a call graph
does not consider the global variables and function parameters
(as has been used by [13]), which could be useful intuitions
for the design of classes. Secondly, approaches presented in
this paper do not address discovery of polymorphism and
inheritance of classes. Thirdly, we have not considered how
many times one function call the other.

Further research on the problem may be directed towards

TABLE V. MC1-MC5 AND GREEDY1-GREEDY3 ALGORITHMS RBIO

Algorithm CC CPL KL
Average Best Average Best Average Best

MC1 0.3321 0.31129 3.0704 2.93199 -98 -81
MC2 0.3189 0.24926 1.0818 1.17601 3 71
MC3 0.3393 0.13958 1.0481 1.22531 -3 73
MC4 0.2114 0.17372 1.8273 2.09649 78 101
MC5 0.2954 0.26033 1.2672 1.25219 25 61
Greedy1 0.280905 1.34956 105
Greedy2 0.219878 0.736625 49
Greedy3 0.302799 1.41524 11

TABLE VI. MC1-MC5 AND GREEDY1-GREEDY3 ALGORITHMS ON
SYNTHETIC1

Algorithm CC CPL KL
Average Best Average Best Average Best

MC1 0.7693 0.388889 1.6265 0.9 0 7
MC2 0.81077 0.777778 1.1078 1.8 4 7
MC3 0.80555 0.777778 1.1408 1.8 4 7
MC4 0.7844 0.777778 1.476 1.8 6 7
MC5 0.8145 0.777778 0.932 1 3 5
Greedy1 0.777 1.8 7
Greedy2 0.83333 1.16666 3
Greedy3 0.6667 0.7037 1

Fig. 1. Monte Carlo Algorithms on BFT

M C - 1 M C - 2 M C - 3 M C - 4 M C - 5
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

Clu
ste

rin
g C

oe
ffic

ien
t

(a) Clustering Coefficient(Ψ)

M C - 1 M C - 2 M C - 3 M C - 4 M C - 5

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

Ch
ara

cte
ris

tics
 Pa

th
Le

ng
th

(b) Characteristics Path Length(χ)

M C - 1 M C - 2 M C - 3 M C - 4 M C - 5

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

Ka
l In

de
x

(c) KAL index (κ)

Fig. 2. Comparison of Heuristics Algorithms on BFT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

MC1 MC2 MC3 MC4 MC5 GA1 GA2 GA3

C
lu

st
er

in
g
 C

o
-e

ff
ic

ie
n
t

(a) Clustering Coefficient(Ψ)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MC1 MC2 MC3 MC4 MC5 GA1 GA2 GA3

C
h
ar

ec
te

ri
st

ic
s

P
at

h
 L

en
g
th

(b) Charecteristics Path Length(χ)

 0

 5

 10

 15

 20

MC1 MC2 MC3 MC4 MC5 GA1 GA2 GA3

K
a
l

In
d
e
x

(c) KAL index (κ)

the using numerical optimization problem solver software to
run the model presented in Section III to get benchmarks
results; testing the proposed larger legacy code instances, and
empirically validating the code by professional OOP experts.
We intend to use meta-heuristic solution space search algo-
rithms on the problem in the next step to get better optimized
results.

ACKNOWLEDGMENT

This research has been supported by The University Grant
Commission, Bangladesh under the Dhaka University Teachers
Research Grant No-Regi/Admn-3/2012-2013/13190.

Thanks to Mr. Md. Selim of IITDU Optimization Research
Group for his total cooperation. Our sincere gratitude to Dr.
Shahadat Hossain, Associate Professor, Dept. Math & Com-
puter Science, Univ. of Lethbridge, AB, Canada for presenting
this problem to us. Thanks to Mr. Tahsin Zulkarnine, Web
Application Developer, Commerx Corporation, Calgary, AB,
Canada for providing experimental data.

REFERENCES

[1] K. Chisolm and J. Lisonbee, “The use of computer language compilers
in legacy code migration,” in IEEE Systems Readiness Technology
Conference (AUTOTESTCON’99). IEEE, 1999, pp. 137–145.

[2] B. G. Ryder, “Constructing the call graph of a program,” Software
Engineering, IEEE Transactions on, no. 3, pp. 216–226, 1979.

[3] Y. Terashima and K. Gondow, “Static call graph generator for C++ using
debugging information,” in 14th Asia-Pacific Software Engineering
Conference (APSEC 2007). IEEE, 2007, pp. 127–134.

[4] S. Hossain and A. T. Zulkarnine, “Design structure of scientific
software–a case study,” in 13th International DSM Conference. MIT,
Cambridge, Massachusetts, USA: IEEE, 2011, pp. 129–141.

[5] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[6] P. O. Asagba and E. Ogheneovo, “A comparative analysis of struc-
tured and object-oriented programming methods,” Journal of Applied
Sciences and Environmental Management, vol. 11, no. 4, pp. 42–46,
2007.

[7] L. A. Wolsey, “Integer programming,” IIE Transactions, vol. 32, no.
273-285, pp. 2–58, 2000.

[8] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[9] D. Braha and Y. Bar-Yam, “The statistical mechanics of complex
product development: empirical and analytical results,” Management
Science, vol. 53, no. 7, pp. 1127–1145, 2007.

[10] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, pp. 27–64, 2007.

[11] H. M. Sneed and E. Nyary, “Extracting object-oriented specification
from procedurally oriented programs,” in 2nd Working Conference on
Reverse Engineering. Toronto, Ont., Canada: IEEE, 1995, pp. 217–
226.

[12] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[13] V. Dineshkumar and J. Deepika, “Code to design migration from struc-
tured to object oriented paradigm,” International Journal of Information
and Communication Technology Research, vol. 1, 2011.

[14] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” VLDB Endowment, vol. 2, no. 1, pp. 718–
729, 2009.

[15] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast
algorithms for projected clustering,” in ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’99. New York,
NY, USA: ACM, 1999, pp. 61–72.

[16] K.-L. Wu and M.-S. Yang, “Alternative c-means clustering algorithms,”
Pattern recognition, vol. 35, no. 10, pp. 2267–2278, 2002.

[17] J. C. Bezdek and N. R. Pal, “Some new indexes of cluster validity,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 28, no. 3, pp. 301–315, 1998.

[18] J. C. Dunn, “A fuzzy relative of the isodata process and its use in
detection compact well-separated clusters,” Journal of Cybernetics,
vol. 3, pp. 32–57, 1973.

